Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas flaring and household stoves speed Arctic thaw

11.09.2013
Gas flaring by the oil industry and smoke from residential burning contributes more black carbon pollution to Arctic than previously thought—potentially speeding the melting of Arctic sea ice and contributing to the fast rate of warming in the region.

The new study, published in the journal Atmospheric Chemistry and Physics by researchers at IIASA and in Norway, Finland, and Russia, finds that gas flaring from oil extraction in the Arctic accounts for 42% of the black carbon concentrations in the Arctic, with even higher levels during certain times of the year.


This map shows the surface concentrations of black carbon, from all emission sources, as simulated by the new study. The study shows that residential combustion emissions and gas flaring emissions are higher than previous studies had estimated.

In the month of March for example, the study showed that flaring accounts for more than half of black carbon concentrations near the surface. Globally, in contrast, gas flaring accounts for only 3% of black carbon emissions.

The researchers also found that residential combustion emissions play a greater role in black carbon pollution than previously estimated, after they incorporated seasonal differences in emissions into the model.

To conduct the study, researchers used particle dispersion model FLEXPART driven by emissions estimated with the IIASA’s GAINS model, combined with measurements of black carbon in the Arctic, made during a research cruise in the Arctic Ocean and research stations located at 6 sites in Alaska, Canada, Finland, Norway, and Greenland.

In the new study, the researchers for the first time included temporal distribution of black carbon emissions from residential combustion. “Understanding how much is emitted when during the year is something that has to be included better in our regional models,” says IIASA researcher Zbigniew Klimont, who worked on the study. It also incorporated detailed regional data on the location of gas flaring emissions, improving upon previous estimates that either ignored them entirely or used only regional averages. These improved emission estimates and their temporal resolution allows for a better reproduction of seasonal variability in observed black carbon concentrations.

“We are seeing more and more oil being extracted further and further north. And the proximity of emissions from gas flaring matters,” says Klimont. Black carbon, or soot, contributes to warming in the Arctic by darkening the surface of snow or ice and causing it to melt faster, or absorbing more heat in the air.

The warming effect of black carbon on ice and snow has been suggested as one factor contributing to the relatively fast warming of the Arctic compared to the rest of the world. Arctic sea ice has declined faster than climate models predict, hitting new record lows in 2007 and 2012.

Reference
Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P., Kopeikin, V. M., and Novigatsky, A. N. 2013. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions, Atmos. Chem. Phys., 13, 8833-8855, doi:10.5194/acp-13-8833-2013.
Funding
This study was funded by the FP7 project ECLIPSE , with additional support from the MACEB project.

Katherine Leitzell | EurekAlert!
Further information:
http://www.iiasa.ac.at

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>