Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future of Western Water Supply Threatened by Climate Change

22.07.2009
As the West warms, a drier Colorado River system could see as much as a one-in-two chance of fully depleting all of its reservoir storage by mid-century assuming current management practices continue on course, according to a new University of Colorado at Boulder study.

The study, in press in the American Geophysical Union journal, Water Resources Research, looked at the effects of a range of reductions in Colorado River stream flow on future reservoir levels and the implications of different management strategies. Roughly 30 million people depend on the Colorado River -- which hosts more than a dozen dams along its 1,450 journey from Colorado's Rocky Mountains to the Gulf of California -- for drinking and irrigation water.

The Colorado River system is presently enduring its 10th year in a drought that began in 2000, said lead study author Balaji Rajagopalan, a CU-Boulder associate professor of civil, environmental and architectural engineering. Fortunately, the river system entered the drought with the reservoirs at approximately 95 percent of capacity. The reservoir system is presently at 59 percent of capacity, about the same as this time last year, said Rajagopalan, also a fellow at CU-Boulder's Cooperative Institute for Research in Environmental Sciences.

The research team examined the future vulnerability of the system to water supply variability coupled with projected changes in water demand. The team found that through 2026, the risk of fully depleting reservoir storage in any given year remains below 10 percent under any scenario of climate fluctuation or management alternative. During this period, the reservoir storage could even recover from its current low level, according to the researchers.

But if climate change results in a 10 percent reduction in the Colorado River's average stream flow as some recent studies predict, the chances of fully depleting reservoir storage will exceed 25 percent by 2057, according to the study. If climate change results in a 20 percent reduction, the chances of fully depleting reservoir storage will exceed 50 percent by 2057, Rajagopalan said.

"On average, drying caused by climate change would increase the risk of fully depleting reservoir storage by nearly ten times more than the risk we expect from population pressures alone," said Rajagopalan. "By mid-century this risk translates into a 50 percent chance in any given year of empty reservoirs, an enormous risk and huge water management challenge," he said.

But even under the most extensive drying scenario, threats to water supplies won't be felt immediately. "There's a tremendous storage capacity on the Colorado River that helps with the reliability of supply over periods of a just few years," said Rajagopalan.

Total storage capacity of reservoirs on the Colorado exceeds 60 million acre feet, almost 4 times the average annual flow on the river, and the two largest reservoirs -- Lake Mead and Lake Powell -- can store up to 50 million acre feet of water. As a result, the risk of full reservoir depletion will remain low through 2026, even with a 20 percent stream flow reduction induced by climate change, said Rajagopalan.

Between 2026 and 2057, the risks of fully depleting reservoir storage will increase seven-fold under the current management practices when compared with risks expected from population pressures alone. Implementing more aggressive management practices -- in which downstream releases are reduced during periods of reservoir shortages -- could lead to only a two-fold increase in risk of depleting all reservoir storage during this period, according to the study.

The magnitude of the risk will ultimately depend on the extent of climate drying and on the types of water management and conservation strategies established, according to the CU-Boulder study.

"Water conservation and relatively small pre-planned delivery shortages tied to declining reservoir levels can play a big part in reducing our risk," said Ken Nowak, a graduate student with CU-Boulder's Center for Advanced Decision Support for Water and Environmental Systems, or CADSWES, and a study co-author.

"But the more severe the drying with climate change, the more likely we will see shortages and perhaps empty reservoirs despite our best efforts." Nowak said. "The important thing is not to get lulled into a sense of safety or security with the near-term resiliency of the Colorado River basin water supply. If we do, we're in for a rude awakening."

"This study, along with others that predict future flow reductions in the Colorado River Basin, suggests that water managers should begin to re-think current water management practices during the next few years before the more serious effects of climate change appear," said Rajagopalan.

Titled "Water Supply Risk on the Colorado River: Can Management Mitigate?" the study was conducted with support from the Western Water Assessment – a joint venture of CU-Boulder and the National Oceanic and Atmospheric Administration, as well as CADSWES and the Bureau of Reclamation.

Other study authors included James Prairie of the Bureau of Reclamation, Martin Hoerling and Andrea Ray of NOAA, Joseph Barsugli and Bradley Udall of CIRES and Benjamin Harding of AMEC Earth & Environmental Inc. of Boulder.

Contact

Balaji Rajagopalan, 303-492-5968
Rajagopalan.Balaji@Colorado.edu
Kenneth Nowak, 303-492-0892
Carol Rowe, 303-492-7426
Adriana Bailey, 303-492-6289

Balaji Rajagopalan | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>