Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future tipping points in the climate could be unveiled

02.09.2008
In the Earth’s history, periods of relatively stable climate have often been interrupted by sharp transitions to a contrasting state. For instance, glaciation periods typically ended suddenly.

About 34 million years ago the Earth’s long lasting tropical state in which most recent life forms evolved, shifted abruptly and irreversibly to a cooler state with ice caps. This shift is known as the "Greenhouse-Icehouse-Transition".

Scientists long suspect that such sharp transitions might be related to tipping points where positive feedback mechanisms lead to self-propelling change. An example of such a mechanism is the ice-albedo feedback. If ice caps melt, more sunlight is absorbed by the darker surface that is exposed. This causes further warming. Although such mechanisms are well known, it was difficult so far to determine whether these feedbacks were strong enough to cause tipping points.

A team of Dutch and German scientists around Marten Scheffer from Wageningen University and Hermann Held from the Potsdam Institute for Climate Impact Research has now analyzed the geological records of eight ancient events of abrupt climate change. These are the end of the greenhouse Earth, the end of the Younger Dryas, the Bølling-Alleröd-Transition, the desertification of North Africa and the ends of four glaciation periods.

In an article in the current online edition of the Proceedings of the National Academy of Sciences the researcher now report that sharp climatic shifts in the past were systematically preceded by subtle alterations in fluctuation patterns. These alterations are proven to be characteristic of systems approaching tipping points. This finding supports the theory that the sharp climatic shifts in the past have happened as the Earth system went over critical thresholds where self-catalyzing change pushed it further towards a contrasting state.

The demonstration of tipping points also has implications for the thinking about current climate change, the authors state. The well known projections by the Intergovernmental Panel on Climate Change are based on the assumption of rather linear change. Although some feedbacks in the Earth system may dampen change, the new results imply that we should also consider the possibility that the climate will cross a tipping point after which changes will be amplified. Whether climate as a whole is now approaching a tipping point is difficult to judge with the new techniques. This is because human influence is simply too fast to generate data records long enough for the detection method. However, for certain parts of the climate system the method may be readily applicable to predict future abrupt change.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>