Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future For Clean Energy Lies In "Big Bang" Of Evolution

26.08.2008
Bacteria hold keys for our future

Amid mounting agreement that future clean, “carbon-neutral”, energy will rely on efficient conversion of the sun’s light energy into fuels and electric power, attention is focusing on one of the most ancient groups of organism, the cyanobacteria.

Dramatic progress has been made over the last decade understanding the fundamental reaction of photosynthesis that evolved in cyanobacteria 3.7 billion years ago, which for the first time used water molecules as a source of electrons to transport energy derived from sunlight, while converting carbon dioxide into oxygen. The light harvesting systems gave the bacteria their blue (“cyano”) colour, and paved the way for plants to evolve by “kidnapping” bacteria to provide their photosynthetic engines, and for animals by liberating oxygen for them to breathe, by splitting water molecules.

For humans now there is the tantalising possibility of tweaking the photosynthetic reactions of cyanobacteria to produce fuels we want such as hydrogen, alcohols or even hydrocarbons, rather than carbohydrates.

Progress at the research level has been rapid, boosting prospects of harnessing photosynthesis not just for energy but also for manufacturing valuable compounds for the chemical and biotechnology industries. Such research is running on two tracks, one aimed at genetically engineering real plants and cyanobacteria to yield the products we want, and the other to mimic their processes in artificial photosynthetic systems built with human-made components. Both approaches hold great promise and will be pursued in parallel, as was discussed at a recent workshop focusing on the photosynthetic reaction centres of cyanobacteria, organised by the European Science Foundation (ESF).

A key point noted by Eva Mari Aro, the vice-chair of the ESF conference, was that there is now universal agreement over the ability of photosynthesis to provide large amounts of clean energy in future. While the sustainable options currently pursued such as wind and tidal power will meet some requirements, they will not be able to replace fossil fuels as sources of solid energy for driving engines, nor are they likely to be capable on their own of generating enough electricity for the whole planet. Meanwhile the current generation of biofuel producing crops generally convert less than 1% of the solar energy they receive to biomass, which means they would displace too much agricultural land used for food production to be viable on a large scale.

There is the potential to develop dedicated systems, whether based on cyanobacteria, plants, or artificial components, capable of much higher efficiencies, reaching 10% efficiency of solar energy conversion. This would enable enough energy and fuel to be produced for a large part of the planet’s needs without causing significant loss of space for food production.

As Aro pointed out, photosynthesis evolved by cyanobacteria produced all our fossil fuels in the first place. However the rapid consumption of these fossil fuels since the industrial revolution would if continued return atmospheric carbon dioxide towards the levels at the time cyanobacteria evolved, also heating the planet up to the much higher temperatures that prevailed then. The objective now is to exploit the same reactions so that the remaining fossil fuels can be left in the ground.

Among promising contenders discussed at the ESF conference was the idea of an artificial leaf that would simulate not just photosynthesis itself but also the ability of plants to regenerate themselves. This could be important, since the reactions of photosynthesis are destructive, dismantling the protein complexes where they take place, which therefore need regular reconstruction. Under a microscope, chloroplasts, the sub-cellular units where photosynthesis take place, resemble a permanent construction site, and even artificial systems would probably need some form of regenerative capability.

A future aim therefore is to build an artificial leaf-like system comprised of self-assembling nanodevices that are capable of regenerating themselves – just as in real plants or cyanobacteria. “Fundamental breakthroughs in these directions are expected on a time scale of 10 to 20 years and are recognized by the international science community as major milestones on the road to a renewable fuel,” said Aro.

Such breakthroughs depend on further progress in understanding the precise structure and mechanisms of photosynthesis, in particular the protein complex known as photosystem II, which breaks down the hydrogen atoms of water into their constituent protons and electrons to carry the energy derived from sunlight onto photosystem I, leading to production of carbohydrates and ultimately also the proteins and fats required by all organisms.

The conference “Molecular Bioenergetics of Cyanobacteria: Towards Systems Biology Level of Understanding” was held on the Costa Brava, Spain during spring 2008.

For more information about the conference please go to http://www.esf.org/activities/esf-conferences/past-events-old-static/past-events-2005/molecular-bioenergetics-of-cyanobacteria.html

Thomas Lau | alfa
Further information:
http://www.esf.org/
http://www.esf.org/activities/esf-conferences/past-events-old-static/past-events-2005/molecular-bioenergetics-of-cyanobacteria.html

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>