Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungi-filled forests are critical for endangered orchids

25.01.2012
Older forests with just the right fungi may be secret to saving vulnerable plants

When it comes to conserving the world's orchids, not all forests are equal. In a paper to be published Jan. 25 in the journal Molecular Ecology, Smithsonian ecologists revealed that an orchid's fate hinges on two factors: a forest's age and its fungi.

Roughly 10 percent of all plant species are orchids, making them the largest plant family on Earth. But habitat loss has rendered many threatened or endangered. This is partly due to their intimate relationship with the soil.

Orchids depend entirely on microscopic fungi in the early stages of their lives. Without the nutrients orchids obtain by digesting these host fungi, their seeds often will not germinate and baby orchids will not grow. While researchers have known about the orchid–fungus relationship for years, very little is known about what the fungi need to survive.

Biologists based at the Smithsonian Environmental Research Center launched the first study to find out what helps the fungi flourish and what that means for orchids. Led by Melissa McCormick, the researchers looked at three orchid species, all endangered in one or more U.S. states.

After planting orchid seeds in dozens of experimental plots, they also added particular host fungi needed by each orchid to half the plots. Then they followed the fate of the orchids and fungi in six study sites: three in younger forests (50 to 70 years old) and three in older forests (120 to 150 years old).

After four years they discovered orchid seeds germinated only where the fungi they needed were abundant—not merely present.

In the case of one species, Liparis liliifolia (lily-leaved twayblade), seeds germinated only in plots where the team had added fungi. This suggests that this particular orchid could survive in many places, but the fungi they need do not exist in most areas of the forest.

Meanwhile, the fungi displayed a strong preference for older forests.

Soil samples taken from older forest plots had host fungi that were five to 12 times more abundant compared to younger forests, even where the research team had not added them. They were more diverse as well. More mature plots averaged 3.6 different Tulasnella fungi species per soil sample (a group of fungi beneficial to these orchids), while the younger ones averaged only 1.3.

Host fungi were also more abundant in plots where rotting wood was added. These host fungi, which are primarily decomposers, may grow better in places where decomposing wood or leaves are plentiful.

All this implies that to save endangered orchids, planting new forests may not be enough. If the forests are not old enough or do not have enough of the right fungi, lost orchids may take decades to return, if they return at all.

"This study, for the first time, ties orchid performance firmly to the abundance of their fungi," McCormick said. "It reveals the way to determine what conditions host fungi need, so we can support recovery of the fungi needed by threatened and endangered orchids."

The University of Alaska Fairbanks and Purdue University also contributed to this study. The abstract will be available here: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2012.05468.x/abstract

Kristen Minogue | EurekAlert!
Further information:
http://www.si.edu
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2012.05468.x/abstract

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>