Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel treatments reduce wildfire severity, tree mortality in Washington forests

26.08.2010
A study conducted by U.S. Forest Service and University of Washington (UW) scientists has found that fuel treatments—even of only a few acres—can reduce fire severity and protect older trees desirable for their timber, wildlife, and carbon-storage value. The finding is part of a three-year study of the 175,000-acre Tripod Fire and is published in the August issue of Canadian Journal of Forest Research.

"This study provides the most definitive evidence yet of the effectiveness of fuel treatments in dry forests of the Pacific Northwest," said Susan Prichard, a UW research scientist and senior author of the study. "If dense forests are thinned and the surface fuels are removed, then ponderosa pine and Douglas-fir trees have a better chance of surviving an intense wildfire."

Prichard and her Forest Service colleagues quantified tree mortality on the Okanogan-Wenatchee National Forest in an area affected by the 2006 Tripod Fire, which burned through forested areas managed to reduce potential fire hazard. Because of the management history of the area, the researchers were able to compare untreated stands, stands that were thinned, and stands that were thinned and then underwent prescribed burns to remove surface fuels.

Results of the comparison revealed that the Tripod Complex fires killed over 80% of trees in stands without treatment and in stands with thinning only. Nearly 60% of trees survived in stands with thinning plus fuel treatment, and three-quarters of larger trees—those with diameters larger than 8 inches—survived.

"It's all about fuels—dead fuels on the ground add energy to wildfire and carry it across the landscape and dense stands of live trees and shrubs act as fuel ladders, moving fire into the canopy," said Dave Peterson, a research biologist with the Forest Service's Pacific Northwest Research Station who coauthored the study. "The objective of fuel treatments is not to eliminate wildfires, but to reduce their intensity in areas where we want to protect resources."

If, as expected, a warmer climate causes an increase in wildfire in future decades, conducting fuel treatments in forest ecosystems will be an important tool for reducing damage from fire and increasing resilience to climate change.

"If we implement treatments across large areas and place them strategically, we can manage these low-elevation forests sustainably, even in a warmer climate," Peterson said.

To view the article's abstract online, visit http://rparticle.web-p.cisti.nrc.ca/rparticle/AbstractTemplateServlet?calyLang=eng&journal=cjfr&volume=40&year=0&issue=8&msno=x10-109.

The PNW Research Station is headquartered in Portland, Oregon. It has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Yasmeen Sands | EurekAlert!
Further information:
http://www.fs.fed.us

Further reports about: Fuel cells Pacific coral Tripod forest ecosystem warmer climate

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>