Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


FSU, Duke Partner to Study Impact of Gulf’s ‘Dead Zone’ on Shrimp Fishery

A team of researchers from The Florida State University, Duke University and the National Marine Fisheries Service will study the environmental and economic impacts of the vast “dead zone” in the northern Gulf of Mexico on shrimping in the region, home to one of the nation’s most highly valued single-species fisheries.

Florida State will serve as the lead institution for the collaborative project, which is funded by a four-year, $702,969 grant from the National Oceanic and Atmospheric Administration’s (NOAA) Northern Gulf of Mexico Ecosystem and Hypoxia Assessment Program.

Dead zones result from hypoxia (low oxygen) caused by algal blooms, which deplete the oxygen in water and render it unable to sustain animal life -- a potentially catastrophic issue for the Gulf shrimping industry, estimated to be worth about $500 million annually. The Gulf of Mexico’s increasingly severe dead zone is one of the world’s two or three largest and the biggest one that affects a U.S. fishery. It forms in the late spring and summer off the coasts of Louisiana and Texas, covers between 7,500 and 8,500 square miles -- roughly the size of New Jersey -- and in some years stretches over nearly 12,500 square miles.

“Previous studies of hypoxia in the Gulf of Mexico have linked it to nutrient-rich runoff that fuels the algal blooms,” said marine ecologist Kevin Craig, a faculty member at The Florida State University Coastal and Marine Laboratory and a principal investigator for the study.

“Most of the nutrients seem to come from agricultural activities in the Mississippi River watershed, which drains 41 percent of the continental United States and includes major farming states in the Midwest,” Craig said. “Our research team intends to more effectively assess the likely effects of nutrient loading and hypoxia on fisheries, the associated economic costs of habitat degradation for fishermen and others who depend on coastal resources for their livelihoods, and the benefits of environmental policies to reduce nutrient pollution.”

Joining Craig is co-principal investigator Martin Smith, associate professor of environmental economics at Duke’s Nicholas School of the Environment and Earth Sciences. The study’s other participants are Lori Snyder Bennear, assistant professor of environmental economics and policy at the Nicholas School, and Jim Nance, a shrimp biologist at the National Marine Fisheries Service in Galveston, Texas.

“I’ve been working on the effects of the dead zone in both the Gulf of Mexico and in southeast U.S. estuaries for several years,” Craig said. “Most of my work has focused on the ecological effects of hypoxia. At Duke, Marty Smith has worked on the economic aspects but in other ecosystems. Ecology and economics are two disparate fields with very different cultures and approaches. Given the complexity of the problem in the Gulf, we decided to collaborate so that we could cover all facets of the dead zone’s consequences for the coastal ecosystem’s capacity to support fisheries.”

“Not much is known about the runoff’s economic effects on the shrimp fishery,” Smith said. “This research project will be the first direct investigation of these links.”

Regardless of the causes, Craig notes that hypoxia has substantial effects on the behavior of both shrimp and shrimp fishermen, forcing them to relocate to other areas. Smith points to changing economic conditions -- including declines in real shrimp prices due to competition from imports and rising fuel costs that likely also have influenced the shrimp fleet’s behavior.

Craig and Smith agree that the dynamic nature of the interaction makes it difficult to measure the dead zone’s impacts based solely on the reported size of annual shrimp harvests.

To produce a more accurate measure of hypoxia’s impacts over large areas and extended periods of time, the researchers will collect and analyze data from a variety of sources and models, including aerial surveys of shrimping activity in waters around the dead zone.

Since the 1970s, the duration and frequency of dead zones have increased across the world’s oceans and can even be found in freshwater bodies such as Lake Erie.

For digital images, contact Craig at or (850) 697-8550.

Kevin Craig | Newswise Science News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>