Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU, Duke Partner to Study Impact of Gulf’s ‘Dead Zone’ on Shrimp Fishery

02.11.2009
A team of researchers from The Florida State University, Duke University and the National Marine Fisheries Service will study the environmental and economic impacts of the vast “dead zone” in the northern Gulf of Mexico on shrimping in the region, home to one of the nation’s most highly valued single-species fisheries.

Florida State will serve as the lead institution for the collaborative project, which is funded by a four-year, $702,969 grant from the National Oceanic and Atmospheric Administration’s (NOAA) Northern Gulf of Mexico Ecosystem and Hypoxia Assessment Program.

Dead zones result from hypoxia (low oxygen) caused by algal blooms, which deplete the oxygen in water and render it unable to sustain animal life -- a potentially catastrophic issue for the Gulf shrimping industry, estimated to be worth about $500 million annually. The Gulf of Mexico’s increasingly severe dead zone is one of the world’s two or three largest and the biggest one that affects a U.S. fishery. It forms in the late spring and summer off the coasts of Louisiana and Texas, covers between 7,500 and 8,500 square miles -- roughly the size of New Jersey -- and in some years stretches over nearly 12,500 square miles.

“Previous studies of hypoxia in the Gulf of Mexico have linked it to nutrient-rich runoff that fuels the algal blooms,” said marine ecologist Kevin Craig, a faculty member at The Florida State University Coastal and Marine Laboratory and a principal investigator for the study.

“Most of the nutrients seem to come from agricultural activities in the Mississippi River watershed, which drains 41 percent of the continental United States and includes major farming states in the Midwest,” Craig said. “Our research team intends to more effectively assess the likely effects of nutrient loading and hypoxia on fisheries, the associated economic costs of habitat degradation for fishermen and others who depend on coastal resources for their livelihoods, and the benefits of environmental policies to reduce nutrient pollution.”

Joining Craig is co-principal investigator Martin Smith, associate professor of environmental economics at Duke’s Nicholas School of the Environment and Earth Sciences. The study’s other participants are Lori Snyder Bennear, assistant professor of environmental economics and policy at the Nicholas School, and Jim Nance, a shrimp biologist at the National Marine Fisheries Service in Galveston, Texas.

“I’ve been working on the effects of the dead zone in both the Gulf of Mexico and in southeast U.S. estuaries for several years,” Craig said. “Most of my work has focused on the ecological effects of hypoxia. At Duke, Marty Smith has worked on the economic aspects but in other ecosystems. Ecology and economics are two disparate fields with very different cultures and approaches. Given the complexity of the problem in the Gulf, we decided to collaborate so that we could cover all facets of the dead zone’s consequences for the coastal ecosystem’s capacity to support fisheries.”

“Not much is known about the runoff’s economic effects on the shrimp fishery,” Smith said. “This research project will be the first direct investigation of these links.”

Regardless of the causes, Craig notes that hypoxia has substantial effects on the behavior of both shrimp and shrimp fishermen, forcing them to relocate to other areas. Smith points to changing economic conditions -- including declines in real shrimp prices due to competition from imports and rising fuel costs that likely also have influenced the shrimp fleet’s behavior.

Craig and Smith agree that the dynamic nature of the interaction makes it difficult to measure the dead zone’s impacts based solely on the reported size of annual shrimp harvests.

To produce a more accurate measure of hypoxia’s impacts over large areas and extended periods of time, the researchers will collect and analyze data from a variety of sources and models, including aerial surveys of shrimping activity in waters around the dead zone.

Since the 1970s, the duration and frequency of dead zones have increased across the world’s oceans and can even be found in freshwater bodies such as Lake Erie.

For digital images, contact Craig at kevin.craig@bio.fsu.edu or (850) 697-8550.

Kevin Craig | Newswise Science News
Further information:
http://www.fsu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>