Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freshwater Flows Into the Arctic and Southern Oceans Appear to Determine the Composition of Microbial Populations

12.10.2012
Part of NSF's International Polar Year research portfolio, the six-nation study indicates that shallow-water populations have little in common

Differing contributions of freshwater from glaciers and streams to the Arctic and Southern oceans appear to be responsible for the fact that the majority of microbial communities that thrive near the surface at the Poles share few common members, according to an international team of researchers, some of whom were supported by the National Science Foundation (NSF).

In a paper published in the Oct. 8 edition of the Proceedings of the National Academy of Sciences (PNAS), the researchers report that only 25 percent of the taxonomic groups identified by genetic sequencing that are found at the surface of these waters are common between the two polar oceans. The differences were not as pronounced among microbes deeper in the oceans, with a 40 percent commonality for those populations.

The findings were produced by research supported by NSF during the International Polar Year 2007-2009 (IPY), a global scientific deployment that involved scientists from more than 60 nations. NSF was the lead U.S. agency for the IPY.

"Some of the DNA samples were collected during "Oden Southern Ocean 2007-2008," a unique collaborative effort between NSF's Office of Polar Programs and the Swedish Polar Research Secretariat to perform oceanographic research in the difficult-to-reach and poorly studied Amundsen Sea," said Patricia Yager, a researcher at the University of Georgia and a co-author on the paper.

The Oden cruise was among the first IPY deployments. In addition, some of the samples used in the research were gathered as part of NSF's Life in Extreme Environments Program.

The Polar regions often are described as being, in many ways, mirror images of one another--the Arctic being a ocean surrounded by continental landmasses, while Antarctica is a continent surrounded by an ocean--but the new findings add a biological nuance to those comparisons.

"We believe that differences in environmental conditions at the poles and different selection mechanisms were at play in controlling surface and deep ocean community structure between polar oceans," said Alison Murray of the Desert Research Institute in Reno, Nev., and a co-author on the PNAS paper. "Not surprisingly, the Southern and Arctic oceans are nearest neighbors to each other when compared with communities from lower latitude oceans."

One of the most notable differences in environmental conditions between the two polar oceans is freshwater input. In the Southern Ocean, glacial melt water accounts for most of the freshwater that flows into the systems. In contrast, the Arctic Ocean receives much bigger pulses of freshwater from several large river systems with huge continental drainage basins, in addition to glacial melt water.

The group found that the differences between the poles were most pronounced in the microbial communities sampled from the coastal regions. "This likely is a result of the significant differences in freshwater sourcing to the two polar oceans," said Jean-François Ghiglione, lead author of the article and professor at the Observatoire Océanologique in Banyuls-Sur-Mer, France.

While the surface microbial communities appear to be dominated by environmental selection, such as through the freshwater inputs, the deep communities are more constrained by historical events and connected through oceanic circulation, providing evidence for biogeographically defined communities in the global ocean, according to the authors.

The team compared 20 samples from the Southern Ocean and 24 from the Arctic from both surface and deep waters. They also included an additional 48 samples from lower latitudes to investigate the polar signal in global marine bacterial biogeography.

The researchers specifically compared samples from coastal and open oceans and between winter and summer, to test whether or how environmental conditions and dispersal patterns shape communities in the polar oceans. Samples were processed and analyzed using an identical approach, based on a special technique of DNA sequencing called pyrosequencing, involving more than 800,000 sequences from the 92 samples.

"Our analyses identified a number of key organisms in both poles in the surface and deep ocean waters that are important in driving the differences between the communities," Murray said. "Further research is needed to address the ecological and evolutionary processes underlying these patterns."

The collaborative research was the result of an international effort coordinated by Murray, that involved national polar research programs from six countries--Canada, France, New Zealand, Spain, Sweden and the United States. Support for the work also came from the Sloan Foundation's Census of Marine Life program, which stimulated field efforts at both poles and a separate program targeting marine microbes, the International Census of Marine Microbes, that developed the approach and conducted the sequencing effort.

"The collective energies required to bring this study to fruition were remarkable," Murray said. "Through using similar strategies and technologies from sample collection through next- generation sequencing, we have a highly comparable, unprecedented dataset that for the first time has really allowed us to look in depth across a relatively large number of samples into the similarities of the microbial communities between the two polar oceans."

Media Contacts
Peter West, NSF (703) 292-7530 pwest@nsf.gov
Principal Investigators
Patricia L. Yager, University of Georgia (706) 542-6824 pyager@uga.edu
Alison E Murray, Desert Research Institute (775) 673-7361 Alison.Murray@dri.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Peter West | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>