Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More frequent fires could aid ecosystems

25.02.2010
With a changing climate there’s a good chance that forest fires in the Pacific Northwest will become larger and more frequent – and according to one expert speaking today at a professional conference, that’s just fine.

The future of fire in this region is difficult to predict, will always be variable, and undoubtedly a part of the future landscape. People should understand, however, that fire is not only inevitable but also a valuable part of forest ecosystems and their management, says John Bailey, an associate professor in the Department of Forest Engineering, Resources and Management at Oregon State University.

Bailey will speak as one of many invited experts at “Forest Health in Oregon: State of the State,” a conference being held at Oregon State University. He describes fire as a force that should be understood, often welcomed, used as appropriate and more frequently incorporated into long-term ecosystem management.

“Forests historically had more fire across much of Oregon, and they would love to have more today,” Bailey said. “Burning is a natural ecosystem process and generally helps restore forest ecosystems. It’s ironic that we spend so much money to stop fire, because we should learn to see fire as more of a partner and not always an enemy.”

Many experts are warning that global warming and drought stress in forests may make them more vulnerable to frequent, larger and hotter fires, Bailey said. That may be true, he added, although future predictions can’t be made with a high degree of certainty, and there will still be a wide amount of variation in the types of fires and acreages burned in various years.

But the more important point, he emphasized, is that even if some of the more dire scenarios are true, they shouldn’t necessarily be seen as a crisis. Frequent fire in Pacific Northwest forests will promote forest composition, structure and function that’s more consistent with how these forests grew historically. Prior to European settlement, fires were significantly more frequent, sometimes were started on purpose and rarely suppressed.

“Right now we’re spending billions of dollars to prevent something that is going to happen sooner or later, whether we try to stop it or not, and something that can assist us in sound land management,” Bailey said. “It may always make sense to put out some fires when they threaten communities, or in other select circumstances.

“But periodic fire has always been a part of our forests, and we need to accept it as such, sort of like how we plan for and accept a very wet winter that comes along now and then,” he said.

Fire regimes vary widely based on fuel loads, topography and weather in the short term, and forces such as fire suppression, forest management and climate changes in the long term, Bailey said. They can be linked to droughts, insect attack and other factors that are all a natural part of the forest. But the key to the future, he said, is accepting the inevitability of fire and learning to manage it as a natural part of the ecosystem.

That may take a substantial culture shift, he conceded, when much of the public and even government agencies have traditional ways of looking at fire and resource loss, consider all forest fire as bad, and even organize large, commercially important systems based around fire suppression.

Much recent research, however, has explored the ways in which fire helps treat fuel loading issues within stands and across landscapes; reduces competition for moisture and nutrients; develops complex forest structure; helps maintain the health of surviving trees and leaves them better able to resist disease and insect attack; and sometimes sets the stage for forest renewal.

Most burned area within the majority of Oregon fires are not stand-replacement situations, researchers have found. Their structure varies after a fire, usually as a result of pre-fire variability in the fuels, weather fluctuations and sometimes suppression activities. But proactive fuel management can lower the importance of suppression efforts.

“The move to new viewpoints could not only help benefit our forests, but save a lot of money and be quite exciting for exploring the natural role of fire in our state,” Bailey says. “We’ve had a wide range of forest conditions in the past and, despite whatever climate change may bring, we’ll have a wide range in the future. And fire will be a part of it.”

The professional conference is exploring issues in Oregon forest health, current forest conditions, recent research, and management approaches for the future. It’s being held Feb. 24-25 at the LaSells Stewart Center on the OSU campus, hosted by the OSU College of Forestry and Forestry Extension.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

John Bailey | EurekAlert!
Further information:
http://www.oregonstate.edu

Further reports about: Forestry OSU Oregon Pacific coral forest ecosystem

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>