Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


More frequent fires could aid ecosystems

With a changing climate there’s a good chance that forest fires in the Pacific Northwest will become larger and more frequent – and according to one expert speaking today at a professional conference, that’s just fine.

The future of fire in this region is difficult to predict, will always be variable, and undoubtedly a part of the future landscape. People should understand, however, that fire is not only inevitable but also a valuable part of forest ecosystems and their management, says John Bailey, an associate professor in the Department of Forest Engineering, Resources and Management at Oregon State University.

Bailey will speak as one of many invited experts at “Forest Health in Oregon: State of the State,” a conference being held at Oregon State University. He describes fire as a force that should be understood, often welcomed, used as appropriate and more frequently incorporated into long-term ecosystem management.

“Forests historically had more fire across much of Oregon, and they would love to have more today,” Bailey said. “Burning is a natural ecosystem process and generally helps restore forest ecosystems. It’s ironic that we spend so much money to stop fire, because we should learn to see fire as more of a partner and not always an enemy.”

Many experts are warning that global warming and drought stress in forests may make them more vulnerable to frequent, larger and hotter fires, Bailey said. That may be true, he added, although future predictions can’t be made with a high degree of certainty, and there will still be a wide amount of variation in the types of fires and acreages burned in various years.

But the more important point, he emphasized, is that even if some of the more dire scenarios are true, they shouldn’t necessarily be seen as a crisis. Frequent fire in Pacific Northwest forests will promote forest composition, structure and function that’s more consistent with how these forests grew historically. Prior to European settlement, fires were significantly more frequent, sometimes were started on purpose and rarely suppressed.

“Right now we’re spending billions of dollars to prevent something that is going to happen sooner or later, whether we try to stop it or not, and something that can assist us in sound land management,” Bailey said. “It may always make sense to put out some fires when they threaten communities, or in other select circumstances.

“But periodic fire has always been a part of our forests, and we need to accept it as such, sort of like how we plan for and accept a very wet winter that comes along now and then,” he said.

Fire regimes vary widely based on fuel loads, topography and weather in the short term, and forces such as fire suppression, forest management and climate changes in the long term, Bailey said. They can be linked to droughts, insect attack and other factors that are all a natural part of the forest. But the key to the future, he said, is accepting the inevitability of fire and learning to manage it as a natural part of the ecosystem.

That may take a substantial culture shift, he conceded, when much of the public and even government agencies have traditional ways of looking at fire and resource loss, consider all forest fire as bad, and even organize large, commercially important systems based around fire suppression.

Much recent research, however, has explored the ways in which fire helps treat fuel loading issues within stands and across landscapes; reduces competition for moisture and nutrients; develops complex forest structure; helps maintain the health of surviving trees and leaves them better able to resist disease and insect attack; and sometimes sets the stage for forest renewal.

Most burned area within the majority of Oregon fires are not stand-replacement situations, researchers have found. Their structure varies after a fire, usually as a result of pre-fire variability in the fuels, weather fluctuations and sometimes suppression activities. But proactive fuel management can lower the importance of suppression efforts.

“The move to new viewpoints could not only help benefit our forests, but save a lot of money and be quite exciting for exploring the natural role of fire in our state,” Bailey says. “We’ve had a wide range of forest conditions in the past and, despite whatever climate change may bring, we’ll have a wide range in the future. And fire will be a part of it.”

The professional conference is exploring issues in Oregon forest health, current forest conditions, recent research, and management approaches for the future. It’s being held Feb. 24-25 at the LaSells Stewart Center on the OSU campus, hosted by the OSU College of Forestry and Forestry Extension.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

John Bailey | EurekAlert!
Further information:

Further reports about: Forestry OSU Oregon Pacific coral forest ecosystem

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>