Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Forest fire prevention efforts will lessen carbon sequestration, add to greenhouse warming

Widely sought efforts to reduce fuels that increase catastrophic fire in Pacific Northwest forests will be counterproductive to another important societal goal of sequestering carbon to help offset global warming, forestry researchers at Oregon State University conclude in a new report.

Even if the biofuels were used in an optimal manner to produce electricity or make cellulosic ethanol, there would still be a net loss of carbon sequestration in forests of the Coast Range and the west side of the Cascade Mountains for at least 100 years – and probably much longer, the study showed.

"Fuel reduction treatments should be forgone if forest ecosystems are to provide maximal amelioration of atmospheric carbon dioxide over the next 100 years," the study authors wrote in their conclusion. "If fuel reduction treatments are effective in reducing fire severities in the western hemlock, Douglas-fir forests of the west Cascades and the western hemlock , Sitka spruce forests of the Coast Range, it will come at the cost of long-term carbon storage, even if harvested material are used as biofuels."

The study raises serious questions about how to maximize carbon sequestration in these fast-growing forests and at the same time maximize protection against catastrophic fire.

"It had been thought for some time that if you used biofuel treatments to produce energy, you could offset the carbon emissions from this process," said Mark Harmon, holder of the Richardson Chair in the OSU Department of Forest Ecosystems and Society. "That seems to make common sense and sounds great in theory, but when you actually go through the data it doesn't work."

Using biofuels to produce energy does not completely offset the need for other fossil fuels use and completely negate their input to the global carbon budget, the researchers found. At the absolute maximum, you might recover 90 percent of the energy, the study said.

"That figure, however, assumes an optimal production of energy from biofuels that is probably not possible," Harmon said. "By the time you include transportation, fuel for thinning and other energy expenditures, you are probably looking at a return of more like 60-65 percent. And if you try to produce cellulosic ethanol, the offset is more like 35 percent."

"If you take old, existing forests from these regions and turn them into almost anything else, you will have a net loss in carbon sequestration," Harmon said.

That could be significant. Another recent OSU studied concluded that if forests of Oregon and northern California were managed exclusively for carbon sequestration, they could double the amount of sequestration in many areas and triple it in some.

The new study found that, in a Coast Range stand, if you removed solid woody biofuels for reduction of catastrophic fire risks and used those for fuel, it would take 169 years before such usage reached a break-even point in carbon sequestration. The study showed if the same material were used in even less efficient production of cellulosic ethanol, it would take 339 years.

The researchers did not consider in this analysis how global warming in coming years might affect the increase of catastrophic fire, Harmon said. However, "fire severity in many forests may be more a function of severe weather events rather than fuel accumulation," the report authors wrote, and fuel reduction efforts may be of only limited effectiveness, even in a hotter future.

"Part of what seems increasingly apparent is that we should consider using west side forests for their best role, which is carbon sequestration, and focus what fuel reduction efforts we make to protect people, towns and infrastructure," Harmon said. "It's almost impossible anyway to mechanically treat the immense areas that are involved and it's hugely expensive. As a policy question we have to face issues of what approaches will pay off best and what values are most important."

The report was just published in Ecological Applications, a professional journal. The lead author was Stephen Mitchell, who conducted the work as part of his doctoral thesis while at OSU, and is now at Duke University. Among the findings:

Fuel reduction treatments that have been proposed to reduce wildfire severity also reduce the carbon stored in forests;

On west side Cascade Range and Coast Range forests, which are wetter, the catastrophic fire return interval is already very long, and the additional levels of fuel accumulation have not been that unusual;

A wide range of fire reduction approaches, such as salvage logging, understory removal, prescribed fire and other techniques, can effectively reduce fire severity if used properly;

Such fuel removal almost always reduces carbon storage more than the additional carbon the stand is able to store when made more resistant to wildfire, in part because most of the carbon stored in forest biomass remains unconsumed even by high-severity wildfires;

Considerable uncertainty exists in modeling of future fires, and some fuel reduction techniques, especially overstory thinning treatments, could potentially lead to an increase in fire severity.

The study authors concluded that fuel reduction may still make more sense in east-side Cascade Range and other similar forests, but that the west-side Cascades and Coast Range have little sensitivity to forest fuel reduction treatments – and might be best utilized for their high carbon sequestration capacities.

"Ultimately, the real problem here is global climate change," Harmon said. "Insect epidemics are increasing, trees are dying. There are no quick fixes to these issues."

Mark Harmon | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>