Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forecasting rain - Radars for estimating rainfall rates

06.11.2008
To be effective, flood warning systems use rainfall data available in real time. These data come from the ground observation network and estimations made based on the national network of climate radars operated by Météo France.

Today, mountain zones are only partially covered by this rain detection technology. Within the INTERREG project, a new generation of radars is being tested by Cemagref in the Var department, a mountainous region with a high flood risk. The radar is currently located in the countryside immediately inland from Nice.

Measuring the intensity of rain as it is falling is indispensable to anticipating rapidly rising waters and reacting to the associated flood risk. To the classical rain gauges installed throughout the area, new radar technologies were added in the 1990s to detect rain and measure the accumulation of precipitations in real time.

Today, Météo France has a national network of 24 weather radars available within approximately 100 km. However, all regions in France are not covered by this mesh, in particular the mountain zones where the relief masks downstream rain zones by creating an obstacle to wave displacement. Within the FRAMEA1 project, a new radar technology developed by Novimet ² is being tested at the Aix-en-Provence Cemagref. The experiments conducted in the Maures massive have proven to be highly promising.

[1 Flood forecasting using Radar in Alpine and Mediterranean Areas (FRAMEA)]
[2 A young company split off from the CNRS]
- More compact and less expensive radars
The radars used at the beginning to monitor planes flying overhead were extended to the detection and quantification of precipitations. Large-scale radars, 6–8 m in antenna diameter, are used today in weather stations located in the plains. In mountain zones, the number of radars must be multiplied in relation to the relief, which requires smaller and less expensive models. The new Hydrix radar responds to these demands. However, by reducing the diameter of the parabolic antenna to 1.5 m, the wave frequency must be boosted, which increases the attenuation of waves during their displacement.

To compensate this signal attenuation effect, a profiling algorithm (ZPHI) is used. Finally, the radar operates in double polarization, which provides information on the size of the rain drops and estimates precipitations without resetting ground network observations. Today, in a doctoral dissertation supervised by both Cemagref and the firm Novimet, this new radar technology is being tested in the Var department, a mountainous region that experiences very intense flash floods.

- Results that are coherent with ground readings

The Hydrix is installed near Réal Collobrier, Cemagre’s instrumented research catchment, located in the Maures massif. The total rainfall in autumn 2006 calculated by the radar was compared to the rain gauge readings on the ground and to the accumulation estimated by one of the nearby radars belonging to the Météo France network. Within a 60- to 80-km radius, the data supplied by the radar were in coherence with the quantities of rain collected on the ground. In addition, the algorithmic signal processing retransmitted rain gauge data in real time that were as good quality as the data sent by the classical radar managed by Météo France.

Today, the research is continuing so as to integrate the rain gauge data supplied by the radar into existing rainfall-runoff models. By converting rainfall into runoff, these mathematical tools can calculate the runoff of rivers at the outlet of a catchment. These rainfall and runoff data then feed the flood warning systems, such as the Aiga system developed by Cemagref and Météo France in 2005. By completing the existing radar network, the Hydrix technology will contribute to the extension of the flood warning system over the entire area, including mountainous zones.

Marie Signoret | alfa
Further information:
http://www.cemagref.fr
http://www.cemagref.fr/Informations/Presse/InfMediaEV/infomedia85EV/im85_pluie_article1.htm

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>