Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


For forests, an earlier spring than ever


Study finds climate change leads to increased growing season and allows forests to store more CO2

Every spring, as the weather warms, trees in forests up and down the east coast explode in a bright green display of life as leaves fill their branches, and every fall, those same leaves provide one of nature's great color displays of vivid yellow, orange and red.

Over the last two decades, spurred by higher temperatures caused by climate change, Harvard scientists say, forests throughout the Eastern U.S. have experienced earlier springs and later autumns than ever before.

Using a combination of satellite imagery, tower-mounted instruments and on-the-ground observations, research associate Trevor Keenan and Andrew Richardson, associate professor of Organismic and Evolutionary Biology, along with colleagues from 7 different institutions, found that forests throughout the eastern US are showing signs of spring growth earlier than ever, and the growing season in some areas extends further into the fall.

That expanded growing season, they say, has enabled forests to store as much as 26 million metric tons more CO2 than before. The study is described in a June 1 paper published in Nature Climate Change.

"What we find in this paper is an increase in the growing season of forests in the eastern U.S. due to recent climate change," Keenan said. "This has been beneficial for forests in the past, but we do not expect the response to continue unchecked in the future. It must also be kept in mind that this positive effect of warming is but one amid a barrage of detrimental impacts of climate change on the Earth's ecosystems."

Though the fact that forests can store more carbon is a good thing, both Keenan and Richardson warned that continued climate change could lead to more dramatic negative consequences in the future.

"If forests weren't storing additional carbon in this manner, we would be even worse off in terms of atmospheric CO2 levels, so at the moment, it's a good thing…but this is not going to solve the CO2 problem," Richardson said. "Yes, 26 million metric tons is a lot of carbon, but it's still small when compared to fossil fuel emissions.

"And climate change isn't just about warmer temperatures," he continued. "It's also about changes in precipitation patterns…so in the future, an earlier spring might not help forests take up more carbon, if they end up running out of water in mid-summer."

To find evidence for the earlier spring, Keenan and Richardson integrated observations from three sources – satellite imagery, ground observations and instrument towers.

By collecting data across three different scales, Richardson said, Keenan was able to capture both a region-wide picture of the eastern forest – which stretches along the eastern seaboard from Maine to Georgia, and as far inland as Wisconsin – as well as a more granular measurement of individual sites.

By using satellite data, Keenan tracked when forests across the region began to turn green in the spring, and when leaves began to turn in the fall. Ground observations made every three to seven days at the Harvard Forest in Petersham and a long-term research site in New Hampshire provided direct information about the state of the buds, leaves and branches.

When combined with data collected from instrument towers, the various data sets allowed Keenan, Richardson and colleagues to paint a richly detailed picture that shows spring starting earlier, and the growing season lasting longer than at any point in the last two decades.

"Basically, we showed that there are three different ways of looking at this, and they all show the same result – spring is getting earlier," Richardson said. "When you look at the patterns across both space and time, and year-to-year at individual sites, and when you look across different species, the same patterns hold up…that gives us confidence that there's something going on."

Another important finding, Richardson said, is that the research identifies a significant source of error in existing computer models of how forest ecosystems work. It turns out that these models don't properly reflect how spring and autumn temperatures control the start and end of the growing season.

"What that means if you run these models forward 100 years, they won't be accurate," he explained. "This shows an opportunity to improve the models and how they simulate how forests will work under future climate scenarios."

The real power of the findings, however, may be in helping make the effects of climate change more tangible to the general public.

"If you tell people the leaves are going to start coming out in mid-April, and it used to be in early May, that's something people can relate to more easily than describing temperature-change records," Richardson said. "People are just inherently fascinated by the passing of the seasons and weather, and how those two are connected."

"The interesting thing about the findings is that we can watch climate change happen," Keenan said. "Spring is earlier than it used to be, and autumn is later. Everyone can understand that, regardless of their predispositions regarding climate change."

Peter Reuell | Eurek Alert!
Further information:

Further reports about: CO2 Harvard branches forests leaves observations satellite season spring

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>