Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For corals adapting to climate change, it's survival of the fattest -- and most flexible

09.07.2014

Study suggests best targets for environmental conservation

The future health of the world's coral reefs and the animals that depend on them relies in part on the ability of one tiny symbiotic sea creature to get fat—and to be flexible about the type of algae it cooperates with.


This is a closeup of polyps of Orbicella faveolata, more commonly known as boulder coral.

Credit: Image courtesy of The Ohio State University.

In the first study of its kind, scientists at The Ohio State University discovered that corals—tiny reef-forming animals that live symbiotically with algae—are better able to recover from yearly bouts of heat stress, called "bleaching," when they keep large energy reserves—mostly as fat—socked away in their cells.

"We found that some coral are able to acclimatize to annual bleaching, while others actually become more susceptible to it over time," said Andréa Grottoli, professor in the School of Earth Sciences at Ohio State. "We concluded that annual coral bleaching could cause a decline in coral diversity, and an overall decline of coral reefs worldwide."

The study, which appears in the July 9 online edition of Global Change Biology, indicates that some coral species will almost certainly decline with global climate change, while others that exhibit large fat storage and flexibility in the types of algae they partner with will stand a better chance of enduring repeated rounds of stress as oceans get hotter.

It also suggests that the most adaptable species would make good targets for conservation efforts because they are most likely to survive.

"If we conserve reefs that contain coral species with these survival traits, then we're hedging our bets that we might be able to preserve those reefs for an extra decade or two, buying them enough time to acclimatize to climate change," Grottoli said.

Corals are essentially colorless; the brilliant browns, yellows, and greens that we associate with them are actually the colors of algae living inside the corals' animal cells. That's why, when stressed coral dump most of the algae from their cells, their bodies appear pale, or "bleached."

Bleached corals can recover by growing more algae or acquiring new algae once water temperatures return to normal. This research shows that corals' ability to switch the type of algae that they internally grow has a large effect on their recovery.

But if corals don't recover and reefs die, thousands of fish species and other sea creatures lose their habitat.

Normally, bleaching is a rare event. But by 2025, Caribbean waters are expected to be hot enough that the coral living there will be stressed to the point of bleaching once a year. The rest of the tropics are expected to experience annual bleaching by 2050.

Previous studies have only followed coral through one bleaching event, or through two events several years apart. So Grottoli and her team tested what would happen if they subjected some common Caribbean corals to bleaching for two years in a row.

Corals can supplement their diet by eating plankton, but they get most of their energy from their symbiotic relationship with algae. The algae get nutrients from the coral, and the corals get to siphon off sugars that the algae produce in photosynthesis. Like humans, corals can store excess energy as fat.

Two key survival strategies emerged in this study: the most resilient corals stored up fat reserves in times of plenty, and were willing to switch to a new dominant algal type in order to gather food in times of stress. Corals that didn't store fat or were stuck with their algal partner didn't fare as well.

And species that bounced back from one round of bleaching didn't necessarily bounce back a second time.

"We found that the research on single bleaching events is misleading," Grottoli said. "Species that we think are resilient to temperature stress are actually susceptible and vice versa when stressed annually."

Grottoli and her colleagues tested three corals from Puerto Morelos Reef National Park, off the coast of Mexico. Two years in a row, they plucked samples of Porites divaricata, Porites astreoides, and Orbicella faveolata—more commonly known as finger coral, mustard hill coral, and boulder coral—from the ocean floor, and placed them in warm water tanks in an outdoor lab until the corals bleached. Both times, the researchers returned the corals to the ocean to let them recover. They measured several indicators of how well the different species recovered, including the number and type of algae present in the corals' cells and remaining energy reserve.

The mustard hill coral kept lower fat reserves, and partnered with only one algal species. It recovered from the first round of bleaching but not the second. The boulder coral kept moderate fat reserves, but partnered with six different algae and changed between dominant algal types following each bleaching. It recovered from both rounds of bleaching, though it's growth slowed.

The real winner was the finger coral, which switched completely from one algal partner type to another over the course of the study, and had the largest fat reserves—47 percent higher than the boulder coral or mustard hill coral. The finger coral was barely even affected by the second bleaching and maintained a healthy growth rate.

The bottom line: as some species adapt to climate change and others don't, there will be less diversity in reefs, where all the different sizes and shapes of coral provide specialized habitats for fish and other creatures. Interactions among hosts, symbionts, predators and prey would all change in a domino effect, Grottoli said. Reefs would be more vulnerable to storms and disease in general.

It sounds like a bleak picture.

"We're actually a bit optimistic, because we showed that there's acclimation in a one-year window, that it's possible," she said. "In two of our three coral species, we have recovery in six weeks. The paths they took to recovery are different, but they both got there."

###

Coauthors on the study included Grottoli's former graduate students Stephen Levas, Verena Schoepf, and Justin Baumann; Ohio State research associate Yohei Matsui; and Mark Warner of the University of Delaware and his graduate students Matthew Aschaffenburg and Michael McGinley.

This research was funded by the National Science Foundation.

Pam Frost Gorder | Eurek Alert!

More articles from Ecology, The Environment and Conservation:

nachricht Coorong Fish Hedge Their Bets for Survival
27.03.2015 | University of Adelaide

nachricht Greener Industry If Environmental Authorities Change Strategy
27.03.2015 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>