Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Focus on space debris: Envisat

12.10.2012
Space debris came into focus last week at the International Astronautical Congress in Naples, Italy. Envisat, ESA’s largest Earth observation satellite, ended its mission last spring and was a subject of major interest in the Space Debris and Legal session.

Envisat was planned and designed in 1987–1990, a time when space debris was not considered to be a serious problem and before the existence of mitigation guidelines, established by the UN in 2007 and adopted the next year by ESA for all of its projects.

Only later, during the post-launch operational phase, did Envisat’s orbit of about 780 km become a risky debris environment, particularly following the Chinese antisatellite missile test in 2007 and the collision between the Iridium and the Cosmos satellites in 2009.

Lowering Envisat to an orbit that would allow reentry within 25 years, however, was never an option because of its design and limited amount of fuel.

Even if controllers had lowered the satellite immediately after launch in 2002, there would not have been enough fuel to bring it down low enough – to around 600 km – where it could reenter within 25 years.

In 2010, part of the remaining fuel was used to lower the satellite slightly into a less crowded orbit at 768 km, while keeping enough reserve to provide collision avoidance for several years.

The lower orbit also ensured continuity of crucial Earth-observation data until the next generation of satellites – the Sentinels – are fully operational in 2013.

In April 2012, however, contact with Envisat was suddenly lost, preventing ESA from controlling the spacecraft and disrupting data provision to the international Earth observation user community.

ESA is strongly committed to reducing space debris. Today, the deorbiting of missions is taken into consideration during the development of future satellites, and during the operations of current satellites when technically feasible.

Indeed, ESA decided to terminate operations of the 16-year-old ERS-2 satellite in 2011 because there was still enough fuel to lower its orbit to about 570 km, allowing it to reenter well within 25 years.

During the last years of Envisat, ESA began to investigate new technology to deorbit space debris in a controlled fashion.

The problem of debris in low orbits is of paramount importance. ESA space debris represent about 0.5% of the more than 16 000 objects catalogued by the US surveillance network.

ESA is working together with other agencies to reinforce international cooperation in monitoring space debris and to study mitigation and remediation measures that will ensure the future of space endeavours.

During its extended operational lifetime, Envisat provided crucial Earth observation data not only to scientists, but also to many operational services, such as monitoring floods and oil spills.

Its data supported civil protection authorities in managing natural and man-made disasters.

An estimated 2500 scientific publications so far have been based on the data provided by the satellite during its ten-year life.

Robert Meisner | EurekAlert!
Further information:
http://www.esa.int
http://www.esa.int/SPECIALS/Envisat/SEMP053S18H_0.html

Further reports about: ENVISAT ESA Earth observation Earth's magnetic field Space space debris

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>