Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescent light revealed as gauge of coral health

12.03.2013
Mysterious glow of light found to correlate with coral stress prior to bleaching

Coral reefs not only provide the world with rich, productive ecosystems and photogenic undersea settings, they also contribute an economic boost valued at hundreds of billions of dollars.

But their decline in recent years due to a variety of threats—from pollution to climate warming—has lent urgency to the search for new ways to evaluate their health.

A new study by Scripps Institution of Oceanography at UC San Diego scientists has revealed that fluorescence, the dazzling but poorly understood light produced by corals, can be an effective tool for gauging their health.

As described in the March 12 edition of Scientific Reports (a publication of the Nature Publishing Group), marine biologists Melissa Roth and Dimitri Deheyn describe groundbreaking research using fluorescence to test coral stress prompted from cold and heat exposures.

In experimental studies conducted at Scripps, Roth and Deheyn tested the common Indo-Pacific reef-building branching coral Acropora yongei under various temperatures. Branching corals are susceptible to temperature stress and often one of the first to show signs of distress on a reef. Roth and Deheyn found, at the induction of both cold and heat stress, corals rapidly display a decline in fluorescence levels. If the corals are able to adapt to the new conditions, such as to the cold settings in the experiment, then the fluorescence returns to normal levels upon acclimation.

While the corals recovered from cold stress, the heat-treated corals eventually bleached and remained so until the conclusion of the experiment. Coral bleaching, the loss of tiny symbiotic algae that are critical for coral survival, is a primary threat to coral reefs and has been increasing in severity and scale due to climate change. In this study, the very onset of bleaching caused fluorescence to spike to levels that remained high until the end of the experiment. The researchers noted that the initial spike was caused by the loss of "shading" from the symbiotic algae.

"This is the first study to quantify fluorescence before, during, and after stress," said Deheyn. "Through these results we have demonstrated that changes in coral fluorescence can be a good proxy for coral health."

Deheyn said the new method improves upon current technologies for testing coral health, which include conducting molecular analyses in which coral must be collected from their habitat, as opposed to fluorescence that can be tested non-invasively directly in the field.

Corals are known to produce fluorescence through green fluorescent proteins, but little is known about the emitted light's function or purpose. Scientists believe fluorescence could offer protection from damaging sunlight or be used as a biochemical defense generated during times of stress.

"This study is novel because it follows the dynamics of both fluorescent protein levels and coral fluorescence during temperature stress, and shows how coral fluorescence can be utilized as an early indicator of coral stress" said Roth, a Scripps alumna who is now a postdoctoral scientist at Lawrence Berkeley National Laboratory and UC Berkeley.

The National Science Foundation (NSF), an NSF Graduate Research Fellowship, and the Air Force Office of Scientific Research's Natural Materials, Systems and Extremophiles program supported the research. Birch Aquarium at Scripps provided the corals and technical support for the experiments.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>