Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flooding Might Help Lower Gas Emission from Wetlands

25.09.2008
River floods and storms that send water surging through swamps and marshes near rivers and coastal areas might cut in half the average greenhouse gas emissions from those affected wetlands, according to recent research at Ohio State University.

A study suggests that pulses of water through wetlands result in lower average emissions of greenhouse gases over the course of the year compared to the emissions from wetlands that receive a steady flow of water.

The study compared the emission of methane from wetlands under two different conditions, one with a pulsing hydrology system designed to resemble river flooding and one with a steady, low flow of water. The research showed that in areas of deeper water within the wetlands, methane gas fluxes were about twice as high in steady-flow systems than they were in pulsing systems. Methane emissions from edge zones, which are sometimes dry, were less affected by the different types of conditions.

Methane is the major component of natural gas and is a greenhouse gas associated with global warming. While the Environmental Protection Agency estimates that human activities are responsible for about 60 percent of methane emissions worldwide, wetlands are among the natural sources. Bacteria that produce methane during the decay of organic material cause wetlands to release the gas into the atmosphere.

The study by Ohio State University scientists is part of ongoing research comparing pulsing vs. steady-flow conditions in two experimental wetlands on the Columbus campus.

“Pulsing refers to a number of different conditions in wetlands – river pulses that happen on a seasonal basis, two-per-day coastal tides, and the rare but huge ones, like hurricanes or tsunamis,” said William Mitsch, the study’s senior author and director of the Wilma H. Schiermeier Olentangy River Wetland Research Park at Ohio State. “Our point is that the healthiest systems and the ones with the lowest emissions of greenhouse gases are those that have these pulses and that are able to adapt to the pulses.”

The research was published in a recent issue of the journal Wetlands.

Often called the “kidneys” of the environment, wetlands act as buffer zones between land and waterways. They also act as sinks – wetlands filter out chemicals in water that runs off from farm fields, roads, parking lots and other surfaces, and hold on to them for years.

The study examined methane fluxes over a two-year period during which researchers created two different kinds of conditions in two 2.5-acre experimental wetlands. In 2004, scientists used pumps to deliver monthly pulses to create conditions in the wetlands resembling natural marshes flooded with river water. In 2005, researchers pumped approximately the same amount of water but maintained a constant flow of water through the wetlands to mimic less dynamic hydrologic conditions. In addition to methane emissions, the study also investigated other processes such as denitrification, sedimentation, and aquatic productivity.

The pulsing hydrology experiment was maintained and methane levels were measured approximately twice monthly over the two study years by Mitsch, also an environment and natural resources professor at the Olentangy River Wetland Research Park, and study co-author Anne Altor, a former Ohio State graduate student who is now a consultant in Indianapolis. During both years, more methane was emitted during the summer than during other seasons in all portions of the wetlands, with emissions about four times higher during summer in the edge zones. Consistently wet areas released more gases in the spring than did edge zones under both conditions.

Methane is composed of carbon and hydrogen, and its emissions are expressed in terms of the amount of carbon released into the atmosphere. The emissions were at their highest during the summer of the steady-flow year, when the amount of methane released from the deepest part of the wetlands averaged 18.5 milligrams of carbon per square meter of wetland surface per hour. With these wetlands covering about 5 acres, the emissions amounted to an estimated 20 pounds of carbon per day. That level was twice as high as the summertime methane emissions measured from the deepest area of the wetlands during the year of pulsing conditions.

The average levels of methane emissions in the deepest water of the wetlands over the course of the study were 6 pounds of carbon per day in the pulsing year and almost 12 pounds of carbon per day during the steady-flow year.

The researchers suggested that slightly warmer soil temperatures and less fluctuation in water levels during the steady-flow year created conditions that promoted the production of methane.

A simultaneous study of carbon collection in the wetlands showed that the different water conditions had no significant effect on how much carbon was stored by the wetlands. Many experts suggest that the benefits of wetlands’ carbon storage capacity offset any damage resulting from their methane emissions.

Mitsch noted that pulses from storms not only help dissipate one negative effect of wetlands, but also serve as a reminder of how wetlands function to absorb the surge.

“If we didn’t have salt marshes and mangroves in subtropical and tropical coastal areas of the United States, it’s safe to say these current storms would have even more damaging effects,” he said.

“When you lose wetlands, you’ve lost a place for floodwater to go,” Mitsch noted. “Mother Nature is better at withstanding these pulses than we are. Whether it’s a flooding river or a hurricane, no matter what those pulses are, if there’s a natural ecosystem to absorb them, then we as humans would be safer.”

This research was supported by the U.S. Department of Agriculture, a Payne Grant from the Ohio Agricultural Research and Development Center, the Wilma H. Schiermeier Olentangy River Wetland Research Park, the U.S. Environmental Protection Agency, and a Rhonda and Paul Sipp Wetland Research Award.

Contact: William Mitsch, (614) 292-9774; Mitsch.1@osu.edu

Emily Caldwell | Newswise Science News
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>