Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish larvae find the reef by orienting: The earlier the better

24.04.2012
Team of female scientists develop sophisticated numerical model to study larval behavior, fill ecological gap

The behavior of marine larvae is central to fully understanding and modeling the pelagic (open ocean) stage for many coastal organisms. For the first time, a numerical study conducted by the University of Miami (UM) incorporates horizontal larval fish navigation skills into realistic 3D flow fields, creating a powerful tool that spells out how larvae use environmental cues to find their way back to the reef after being out on the open ocean. The new model uses reliable larval swimming speeds and vertical migration, known life history traits and spawning time to create realistic scenarios that can be studied in detail.


This image shows damselfish larvae (Chromis atripectoralis) swimming freely in the open ocean, all in the same direction. In an article entitled: “Orientation behavior in fish larvae: A missing piece to Hjort's critical period hypothesis” that appears in the latest edition of the Journal of Theoretical Biology, scientists Erica Staaterman, Claire Paris and Judith Helgers demonstrate that despite very low swimming speeds -- about a few centimeters per second -- orientation behavior during early stages is critical to bringing larvae back to their juvenile habitat. In other words, baby reef-fish must possess, as early as possible, the ability to sense cues from the habitat that help them to navigate and survive their phase out in the open ocean. Credit: Ricardo Paris

In an article entitled: "Orientation behavior in fish larvae: A missing piece to Hjort's critical period hypothesis" that appears in the latest edition of the Journal of Theoretical Biology, scientists Erica Staaterman, Claire Paris* and Judith Helgers demonstrate that despite very low swimming speeds -- approximately a few centimeters per second -- orientation behavior during early stages is critical to bringing larvae back to the juvenile habitat. The research team shows that baby reef-fish must possess, as early as possible, the ability to sense cues radiating from the habitat that help them to navigate and survive the pelagic phase.

The team used Hjort's "critical period" hypothesis, which says that fish recruitment variability is driven by the fate of the earliest larval stages, and that food and "aberrant drift" are the main factors contributing to the survivorship during this early phase. According to this hypothesis, the proportion of survivors during this "critical" larval phase is carried over throughout the entire life history of the fish's population.

"Orientation during the "critical period" appears to have remarkable demographic consequences," said UM Applied Marine Physics Professor Paris. "Larvae need to orient themselves soon after hatching to increase their chance to find any reef or to come back to their home reef. This notion of 'larval homing behavior' is a new concept, but it makes sense when compared to other essential larval developmental traits such as first feeding and swimming. If early fish larvae can sense their way home, we were certainly missing an important component in current bio-physical models that would change predictions of marine population connectivity."

"Using this model we can add to Hjorts' hypothesis that 'behavior' is a main factor contributing to the survivorship of the larvae, as well," said Staaterman, a Ph.D. student at UM. "We have discovered that recruitment of reef-fish is linked to signals perceived by the pelagic larvae; if the signals disappear or weaken, larvae can get lost. Therefore, the health of the coral reef and its cues is not only critical to the adult reef-fishes, but it is also essential to the survivorship of their pelagic larvae."

This study also shows the importance of the health of the habitat, even in complex coastal circulation with eddies and counter-currents: The stronger the cue information radiating from the surrounding habitat, the higher the survival rate of the larvae.

The flexible numerical tool that was developed through this study will allow scientists to set up hypotheses about both the nature of the cues and the larval behavior of a wide variety of marine species. This knowledge will allow us to better understand the enigmatic ecological "black box" of the pelagic larval phase, and help communities to better manage marine resources.

"These kind of studies, where the paths of millions of fish larvae are simulated in a model ocean, are really only feasible with the newest generation of numerical models," said Helgers, a computer scientist who contributed to the model algorithm which is designed to answer questions on the interaction of larvae with ocean currents. "The model we have built is fast and reliable, which allows us to perform the complex computations required to track the larvae in a high resolution model ocean."

"The outcomes of this study should serve to re-focus research on basic understanding of what larvae are capable of sensing, how they use their capabilities in the pelagic environment, and finally on the sequential importance of navigational cues needed for survival," added Paris.

About the University of Miami's Rosenstiel School

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>