Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

So far, fish appear to be healthy after fly ash spill

10.06.2010
Fish exposed to fly ash at the site of the Tennessee Valley Authority coal ash spill are faring better than some expected, researchers have learned.

Oak Ridge National Laboratory in collaboration with TVA has found that while small amounts of some contaminants from the December 2008 fly ash spill have been taken up by fish in the Clinch and Emory rivers, to-date, the fish collected downstream from the spill appear healthy relative to fish from unimpacted sites.

"We are looking to see if there has been an effect on overall fish health and reproductive condition, and so far, such effects have not been evident," said Mark Peterson, leader of ORNL Environmental Sciences Division's Ecological Assessment Team and the Aquatic Ecology Laboratory.

After the spill deposited 5.4 million cubic yards of coal ash into the Emory River and an embayment adjacent to the Kingston Fossil Plant, the public was concerned that the ash and associated chemicals, particularly arsenic and selenium, could be a health hazard to local residents and also to fish and wildlife.

Likewise, Peterson and a team of ecologists in ESD, including Marshall Adams, Mark Greeley and John Smith, were interested in seeing whether trace components of the ash — such as selenium, which has been found to be toxic to fish and wildlife in large amounts — would be found in insect and fish populations immediately following the spill and for some time after the spill.

A team led by Adams was able to get into the field quickly and collected fish as early as February 2009 at sites both downstream and upstream from the spill. Species tested for contaminant uptake and fish health include bluegill, largemouth bass, channel catfish, white crappie and gizzard shad.

It is the experience assessing the legacy of contaminant deposits in the Clinch River and Watts Bar Reservoir from Department of Energy activities decades ago that provides the ORNL team with the expertise to evaluate changes in ecological conditions in these waters, researchers noted.

"We've been sampling fish from Watts Bar Reservoir since the 1980s to evaluate the impact of Department of Energy facilities, so we have some historical record of regional conditions prior to the spill," Peterson said.

However, while there are historical records from DOE-sponsored studies in some locations for which to compare water quality and fish tissue concentrations pre- and post-spill, determining potential risk to the health of fish populations is more complicated.

"Fish populations can be impacted by a range of factors at this site that are unrelated to the spill, including food and habitat availability, variations in water quality characteristics, presence of historical contaminants such as mercury and PCBs, and interactions with other biota in the reservoir," Peterson said.

Further complicating interpretation of fish health condition is that some fly ash-related contaminants may not cause effects that can be easily measured immediately after the spill. Contaminants like selenium are accumulated via the food chain and it can take some time for fish to reach equilibrium with the environment, or for contaminant exposure to result in measurable negative impacts to fish populations. The ongoing second year of fish sampling will be especially important in assessing the longer-term environmental impacts of the spill, researchers said.

A key contaminant of concern is selenium, which at high concentrations is known to cause reproductive problems in fish, including impacts to fish early life stages. A project led by Mark Greeley will be evaluating fish embryos and larvae exposed to fly ash in large laboratory tanks. Beginning in May and extending through the summer, this study will take up a large part of ORNL's 9,000-square-foot Aquatic Ecology Laboratory and is unique in its attempt to evaluate exposure and effects over longer time scales in a controlled environment.

TVA, which is engaged with ORNL and multiple university and government organizations in monitoring and assessing the effects of the fly ash spill on the environment, is providing the funds to ORNL to continue research this year.

By conducting integrated and multidisciplinary field and laboratory studies, ORNL scientists expect to provide a better understanding of the ecological risks of fly ash exposure. These regional studies will provide insights relative to scientists' broader understanding of the environmental effects and responses of fish and wildlife to various energy alternatives, such as coal-fired power plants.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Katie Freeman | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>