Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish Food Fight: Fish Don’t Eat Trees After All

25.11.2009
What constitutes fish food is a matter of debate. A high-profile study a few years ago suggested that fish get almost 50 percent of their carbon from trees and leaves, evidence for a very close link between the terrestrial and aquatic ecosystems.

But new research from the University of Washington shows this is not likely to be true. Algae provide a much richer diet for fish and other aquatic life, according to research published this week in the Proceedings of the National Academy of Sciences.

“Are the fish made of maple? Our argument would be no, they’re not, they’re made of algae,” says Michael Brett, a UW professor of civil and environmental engineering. “Other scientists have said that up to 50 percent of the carbon was coming from this terrestrial source. We’re saying that’s very unlikely.”

The results could be important not just to fish but to people seeking to boost fish populations.

“In terms of fishery production this means you’ve really got to focus on the algae,” Brett said. “The terrestrial environment is still important, but for other reasons such as habitat.”

The new paper shows that algae are necessary ingredients for healthy zooplankton, the animals at the base of the aquatic food web. Brett’s lab studies omega-3 fatty acids, the same ones touted in health studies. Fish can’t produce the heart-healthy lipids, they just accumulate them from their diet. Brett’s group looks at where exactly the omega-3’s are coming from, largely from several groups of phytoplankton that can make these fats.

After reading the fish food study published in 2004 in the journal Nature, “we were furrowing our brows and saying ‘This doesn’t make sense,’” Brett said, “because the terrestrial plants aren’t producing these omega-3 molecules. Those results completely conflicted with the perspective that was coming out of our own area of research.”

The earlier study by the Institute for Ecosystem Studies in Millbrook, N.Y., was a large-scale experiment on three lakes in Michigan. Researchers fertilized these lakes with a labeled form of carbon dioxide sprinkled on the lakes' surfaces over more than a month. They then analyzed how much of that labeled carbon showed up in animals at each position in the aquatic food web. Even when terrestrial plant matter was only about 20 percent of the available food, they found, the animals appeared to be composed of about 50 percent land-based carbon.

The UW study took a different approach. Brett and colleagues raised zooplankton in the lab, feeding them a diet of either pure algae, pure land-based carbon, or various mixtures of the two. They found that zooplankton fed a purely land-based diet survived and reproduced but were small and produced relatively few offspring. Zooplankton fed a diet of pure algae were 10 times bigger than their tree-fed twins and produced 20 times more offspring. Zooplankton fed a mixed diet were larger and produced more offspring as the proportion of algae in their diet went up. Even when zooplankton ate almost nothing but land-based carbon, nearly all their lipids came from algae.

“I think we were able to show that the terrestrial source is such low quality that it’s inconceivable that it could be nearly as important as what that study suggested,” Brett said.

The research was supported by the National Science Foundation. Co-authors are Sami Taipale and Hari Seshan of the UW and Martin Kainz of the Danube University Krems in Austria.

So why did the earlier study suggest that fish were eating land-based food? Brett believes the reason is those researchers discounted the idea of zooplankton migration, the daily movement down to deeper waters during the daytime to hide from predatory fish. Researchers sprinkled tagged food in the upper waters and assumed that any other food source must be land-based.

“The flaw was that there was an alternative source. They could have been getting half of their carbon from the lower depths in the lakes,” Brett said.

In recent years the earlier study has had a profound impact on the field of aquatic ecology but few scientists have critically assessed its results, Brett says. “What I would hope our paper would do is to really get people to open their eyes and say ‘Does this really add up, and is there a simpler way to look at what is supporting fisheries production?’”

For more information, contact Brett at 206-616-3447 or mtbrett@uw.edu.

Hannah Hickey | Newswise Science News
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>