Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish Food Fight: Fish Don’t Eat Trees After All

25.11.2009
What constitutes fish food is a matter of debate. A high-profile study a few years ago suggested that fish get almost 50 percent of their carbon from trees and leaves, evidence for a very close link between the terrestrial and aquatic ecosystems.

But new research from the University of Washington shows this is not likely to be true. Algae provide a much richer diet for fish and other aquatic life, according to research published this week in the Proceedings of the National Academy of Sciences.

“Are the fish made of maple? Our argument would be no, they’re not, they’re made of algae,” says Michael Brett, a UW professor of civil and environmental engineering. “Other scientists have said that up to 50 percent of the carbon was coming from this terrestrial source. We’re saying that’s very unlikely.”

The results could be important not just to fish but to people seeking to boost fish populations.

“In terms of fishery production this means you’ve really got to focus on the algae,” Brett said. “The terrestrial environment is still important, but for other reasons such as habitat.”

The new paper shows that algae are necessary ingredients for healthy zooplankton, the animals at the base of the aquatic food web. Brett’s lab studies omega-3 fatty acids, the same ones touted in health studies. Fish can’t produce the heart-healthy lipids, they just accumulate them from their diet. Brett’s group looks at where exactly the omega-3’s are coming from, largely from several groups of phytoplankton that can make these fats.

After reading the fish food study published in 2004 in the journal Nature, “we were furrowing our brows and saying ‘This doesn’t make sense,’” Brett said, “because the terrestrial plants aren’t producing these omega-3 molecules. Those results completely conflicted with the perspective that was coming out of our own area of research.”

The earlier study by the Institute for Ecosystem Studies in Millbrook, N.Y., was a large-scale experiment on three lakes in Michigan. Researchers fertilized these lakes with a labeled form of carbon dioxide sprinkled on the lakes' surfaces over more than a month. They then analyzed how much of that labeled carbon showed up in animals at each position in the aquatic food web. Even when terrestrial plant matter was only about 20 percent of the available food, they found, the animals appeared to be composed of about 50 percent land-based carbon.

The UW study took a different approach. Brett and colleagues raised zooplankton in the lab, feeding them a diet of either pure algae, pure land-based carbon, or various mixtures of the two. They found that zooplankton fed a purely land-based diet survived and reproduced but were small and produced relatively few offspring. Zooplankton fed a diet of pure algae were 10 times bigger than their tree-fed twins and produced 20 times more offspring. Zooplankton fed a mixed diet were larger and produced more offspring as the proportion of algae in their diet went up. Even when zooplankton ate almost nothing but land-based carbon, nearly all their lipids came from algae.

“I think we were able to show that the terrestrial source is such low quality that it’s inconceivable that it could be nearly as important as what that study suggested,” Brett said.

The research was supported by the National Science Foundation. Co-authors are Sami Taipale and Hari Seshan of the UW and Martin Kainz of the Danube University Krems in Austria.

So why did the earlier study suggest that fish were eating land-based food? Brett believes the reason is those researchers discounted the idea of zooplankton migration, the daily movement down to deeper waters during the daytime to hide from predatory fish. Researchers sprinkled tagged food in the upper waters and assumed that any other food source must be land-based.

“The flaw was that there was an alternative source. They could have been getting half of their carbon from the lower depths in the lakes,” Brett said.

In recent years the earlier study has had a profound impact on the field of aquatic ecology but few scientists have critically assessed its results, Brett says. “What I would hope our paper would do is to really get people to open their eyes and say ‘Does this really add up, and is there a simpler way to look at what is supporting fisheries production?’”

For more information, contact Brett at 206-616-3447 or mtbrett@uw.edu.

Hannah Hickey | Newswise Science News
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>