Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One fish, two fish … reef fish

22.03.2011
Study establishes proven ecosystem-wide framework for monitoring coral reef fisheries that can be used on global scale

Marine biologists have solved a conundrum that has stumped them for years – how to count reef fish. It may sound simple, but the task is actually complex and critical in helping to evaluate the state of our oceans, coral reefs and the marine life that populate them.

In an article published in the journal Fisheries Research scientists from the University of Miami (UM) and NOAA Fisheries Service have collaborated to create a framework that extends and increases the effectiveness of reef monitoring techniques. The new methodology uses a probabilistic survey approach to more precisely count the numbers of fish in an efficient and cost-effective manner. The framework can be used to determine management strategies best suited to ensure the long-term sustainability of reef resources – whether in the Florida Keys, Hawaii or in the Indo-Pacific's Coral Triangle.

"The results of this study can be used to support stock assessments of principal exploited species, evaluate the performance of 'no-take' marine reserves, and assess community health for many non-target reef fish species," said Steven Thur, acting manager of NOAA's Coral Reef Conservation Program. "This is a great example of science directly feeding into management decisions, finding research efficiencies, and of successful collaboration across federal, state, and academic lines so we invest our funds in areas of greatest importance."

The research team includes Steve Smith, Jerry Ault and Jiangang Luo from UM's Rosenstiel School of Marine & Atmospheric Science, and Jim Bohnsack, Doug Harper and Dave McClellan from NOAA's Southeast Fisheries Science Center. They began their work in the Florida Keys more than three decades ago.

"This program started when it became obvious that we could not evaluate coral reef fish populations by simply counting how many fish were being landed at the dock," said Bohnsack. "We knew that we could see and measure many more fish than we could ever capture and that we need to be able to use non-destructive assessment methods. At first our interest was on individual reefs, but later expanded to much larger areas as we learned more."

In the early years, a technique using scientific divers was developed to reliably count the number and sizes of reef fish by species. In the mid-90's a statistical method was developed to link diver visual counts and advanced mathematical calculations in a rigorous sampling process. This involved dividing the entire Florida Keys reef ecosystem into small sections classified according to simple features like soft and hard bottom, coral, and other features that related to where fish might live. Within each type of habitat a random process was used to select which areas were sampled by divers. This monitoring framework allowed the researchers to calculate the abundance and size-structure of more than 250 exploited and non-target reef fishes from Miami to Key West and out to the Dry Tortugas.

"Through our collaborative work we were able to create a framework that brings together cutting edge techniques in underwater sampling, coral reef mapping and statistical survey design that will serve us well as our marine resources continue to be impacted by fishing, habitat degradation and environmental changes," Smith said.

Although the team began using its theories in the Florida Keys, the new framework is fully transferable to other U.S. coral reef ecosystems and areas around the globe.

"We have already been using this methodology in the Northwestern Hawaiian Islands to assess multispecies reef fish populations, and federal and local management agencies are extremely pleased with the results of these efforts," said Ault. "We hope to employ this approach in new areas in order to have a single, quantitative framework to assess coral reefs at local, regional, national, and international spatial scales."

About the University of Miami's Rosenstiel School

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>