Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One fish, two fish … reef fish

22.03.2011
Study establishes proven ecosystem-wide framework for monitoring coral reef fisheries that can be used on global scale

Marine biologists have solved a conundrum that has stumped them for years – how to count reef fish. It may sound simple, but the task is actually complex and critical in helping to evaluate the state of our oceans, coral reefs and the marine life that populate them.

In an article published in the journal Fisheries Research scientists from the University of Miami (UM) and NOAA Fisheries Service have collaborated to create a framework that extends and increases the effectiveness of reef monitoring techniques. The new methodology uses a probabilistic survey approach to more precisely count the numbers of fish in an efficient and cost-effective manner. The framework can be used to determine management strategies best suited to ensure the long-term sustainability of reef resources – whether in the Florida Keys, Hawaii or in the Indo-Pacific's Coral Triangle.

"The results of this study can be used to support stock assessments of principal exploited species, evaluate the performance of 'no-take' marine reserves, and assess community health for many non-target reef fish species," said Steven Thur, acting manager of NOAA's Coral Reef Conservation Program. "This is a great example of science directly feeding into management decisions, finding research efficiencies, and of successful collaboration across federal, state, and academic lines so we invest our funds in areas of greatest importance."

The research team includes Steve Smith, Jerry Ault and Jiangang Luo from UM's Rosenstiel School of Marine & Atmospheric Science, and Jim Bohnsack, Doug Harper and Dave McClellan from NOAA's Southeast Fisheries Science Center. They began their work in the Florida Keys more than three decades ago.

"This program started when it became obvious that we could not evaluate coral reef fish populations by simply counting how many fish were being landed at the dock," said Bohnsack. "We knew that we could see and measure many more fish than we could ever capture and that we need to be able to use non-destructive assessment methods. At first our interest was on individual reefs, but later expanded to much larger areas as we learned more."

In the early years, a technique using scientific divers was developed to reliably count the number and sizes of reef fish by species. In the mid-90's a statistical method was developed to link diver visual counts and advanced mathematical calculations in a rigorous sampling process. This involved dividing the entire Florida Keys reef ecosystem into small sections classified according to simple features like soft and hard bottom, coral, and other features that related to where fish might live. Within each type of habitat a random process was used to select which areas were sampled by divers. This monitoring framework allowed the researchers to calculate the abundance and size-structure of more than 250 exploited and non-target reef fishes from Miami to Key West and out to the Dry Tortugas.

"Through our collaborative work we were able to create a framework that brings together cutting edge techniques in underwater sampling, coral reef mapping and statistical survey design that will serve us well as our marine resources continue to be impacted by fishing, habitat degradation and environmental changes," Smith said.

Although the team began using its theories in the Florida Keys, the new framework is fully transferable to other U.S. coral reef ecosystems and areas around the globe.

"We have already been using this methodology in the Northwestern Hawaiian Islands to assess multispecies reef fish populations, and federal and local management agencies are extremely pleased with the results of these efforts," said Ault. "We hope to employ this approach in new areas in order to have a single, quantitative framework to assess coral reefs at local, regional, national, and international spatial scales."

About the University of Miami's Rosenstiel School

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>