Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fire risk: close-up on habitat–forest interfaces

In the French Mediterranean region, scattered habitations are gradually gaining on the forest, increasing the risk of fire start-ups and creating new elements that need protection.

In Aix-en-Provence, Cemagref has developed a quasi-automatic method to map habitat–forest interfaces. This tool is of primary interest to land use managers and the actors involved in the fight against forest fires to prevent risk as well as to protect populations and property in case of fire.

“He who lives in isolation lives blissfully.” This is the principle adopted by a growing number of city dwellers, who, searching for the sun, open spaces, and privacy, are building homes on the edges or in the heart of the Mediterranean mountainous forest areas. According to statistics, this phenomenon should continue to develop, with 20% population growth for the South of France before 20201 . Thus, new land use configurations marked by substantial human activity in contact with combustible vegetation are appearing. These spaces, now called habitat–forest interfaces, are sensitive sources of forest fire start-ups. In addition, because of the presence of property and people that require protection, they are zones of increased vulnerability.

In her doctoral dissertation at Aix-en-Provence, Corinne Lampin-Maillet has designed a simple, rapid, and effective method to map the habitat–forest interfaces on large surface areas and on a large scale. The tool defines the type of interface of any zone considered. This information makes it possible to better define the uses of these spaces according to their sensitivity to fire and therefore to control their development.

1 Diren and DRAF PACA, 1999

- Clearly define the notion of interface

The first studies of habitat–forest interfaces appeared in the United States, Canada, and Australia, after the great forest fires of 1985. Other studies have followed in the European Mediterranean countries and at Cemagref over the last decade. The strong point of Corinne Lampin-Maillet’s dissertation is its development of a land use reading method that translates the organization of construction development in interaction with the natural environment as simply as possible. She compared bibliographic data and the opinions of experts of safety services and land use managers, then proposed a relevant definition of the notion of habitat–forest interface to the national context before developing her reading tool. Thus, a construction is said to be “in the habitat–forest interface” if clearing brush is legally required by the French forestry orientation law of 11 July 2001. This concerns constructions located less than 200 m from forests, garrigues, or scrubland. As for the habitat–forest interface zone, it is delimited by the space within a radius of 100 m around these constructions.

- Toward a complete decision-support system

Based on this definition, this scientist has established a method founded on teledetection and a spatial analysis tool to map the habitat–forest interfaces over large surfaces. The spatial analysis of inhabited zones takes into account criteria such as the distance between constructions and how they are grouped. Information relative to the horizontal structure of the vegetation in contact with the construction is added, which reflects it capacity to propagate fire. Depending on the vegetation’s structure and the type of habitat, as many as 12 types of interface have been identified. The method has been successfully applied to two study zones, one located in the Maures massif covering ten towns and the other in the Bouches-du-Rhône department, covering 30 towns.

At the request of the Ministry of Ecology, a methodological aide was written up in 2007; it set out the principles to describe the habitat–forest interfaces as well as the mapping process, which were particularly useful when elaborating the PPRIF². Since January 2008, the tool has been made available to any person or organization that wishes to apply and test it on a real-life scale. Trials are already planned on the department scale in the South of France and in Aquitaine.

Today, research is continuing so that the habitat–forest interface map can evolve toward a global tool for evaluating risk. Thus, other parameters can be taken into account such as wind, the topographic situation of a given zone, the road network, and the vegetation’s vertical structure.

²Plan for prevention of forest fire risks

Marie Signoret | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>