Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings overturn old theory of phytoplankton growth, raise concerns for ocean productivity

19.07.2010
A new study concludes that an old, fundamental and widely accepted theory of how and why phytoplankton bloom in the oceans is incorrect.

The findings challenge more than 50 years of conventional wisdom about the growth of phytoplankton, which are the ultimate basis for almost all ocean life and major fisheries. And they also raise concerns that global warming, rather than stimulating ocean productivity, may actually curtail it in some places.

This analysis was published in the journal Ecology by Michael Behrenfeld, a professor of botany at Oregon State University, and one of the world’s leading experts in the use of remote sensing technology to examine ocean productivity. The study was supported by NASA.

The new research concludes that a theory first developed in 1953 called the “critical depth hypothesis” offers an incomplete and inaccurate explanation for summer phytoplankton blooms that have been observed since the 1800s in the North Atlantic Ocean. These blooms provide the basis for one of the world’s most productive fisheries.

“The old theory made common sense and seemed to explain what people were seeing,” Behrenfeld said.

“It was based on the best science and data that were available at the time, most of which was obtained during the calmer seasons of late spring and early summer,” he said. “But now we have satellite remote sensing technology that provides us with a much more comprehensive view of the oceans on literally a daily basis. And those data strongly contradict the critical depth hypothesis.”

That hypothesis, commonly found in oceanographic textbooks, stated that phytoplankton bloom in temperate oceans in the spring because of improving light conditions – longer and brighter days – and warming of the surface layer. Warm water is less dense than cold water, so springtime warming creates a surface layer that essentially “floats” on top of the cold water below, slows wind-driven mixing and holds the phytoplankton in the sunlit upper layer more of the time, letting them grow faster.

There’s a problem: a nine-year analysis of satellite records of chlorophyll and carbon data indicate that this long-held hypothesis is not true. The rate of phytoplankton accumulation actually begins to surge during the middle of winter, the coldest, darkest time of year.

The fundamental flaw of the previous theory, Behrenfeld said, is that it didn’t adequately account for seasonal changes in the activity of the zooplankton – very tiny marine animals – in particular their feeding rate on the phytoplankton.

“To understand phytoplankton abundance, we’ve been paying way too much attention to phytoplankton growth and way too little attention to loss rates, particularly consumption by zooplankton,” Behrenfeld said. “When zooplankton are abundant and can find food, they eat phytoplankton almost as fast as it grows.”

The new theory that Behrenfeld has developed, called the “dilution-recoupling hypothesis,” suggests that the spring bloom depends on processes occurring earlier in the fall and winter. As winter storms become more frequent and intense, the biologically-rich surface layer mixes with cold, almost clear and lifeless water from deeper levels. This dilutes the concentration of phytoplankton and zooplankton, making it more difficult for the zooplankton to find the phytoplankton and eat them - so more phytoplankton survive and populations begin to increase during the dark, cold days of winter.

In the spring, storms subside and the phytoplankton and zooplankton are no longer regularly diluted. Zooplankton find their prey more easily as the concentration of phytoplankton rises. So even though the phytoplankton get more light and their growth rate increases, the voracious feeding of the zooplankton keeps them largely in-check, and the overall rise in phytoplankton occurs at roughly the same rate from winter to late spring. Eventually in mid-summer, the phytoplankton run out of nutrients and the now abundant zooplankton easily overtake them, and the bloom ends with a rapid crash.

“What the satellite data appear to be telling us is that the physical mixing of water has as much or more to do with the success of the bloom as does the rate of phytoplankton photosynthesis,” Behrenfeld said. “Big blooms appear to require deeper wintertime mixing.”

That’s a concern, he said, because with further global warming, many ocean regions are expected to become warmer and more stratified. In places where this process is operating – which includes the North Atlantic, western North Pacific, and Southern Ocean around Antarctica – that could lead to lower phytoplankton growth and less overall ocean productivity, less life in the oceans. These forces also affect carbon balances in the oceans, and an accurate understanding of them is needed for use in global climate models.

Worth noting, Behrenfeld said, is that some of these regions with large seasonal phytoplankton blooms are among the world’s most dynamic fisheries.

The critical depth hypothesis would suggest that a warmer climate would increase ocean productivity. Behrenfeld’s new hypothesis suggests the opposite.

Behrenfeld said that oceans are very complex, water mixing and currents can be affected by various forces, and more research and observation will be needed to fully understand potential future impacts. However, some oceanographers will need to go back to the drawing board.

“With the satellite record of net population growth rates in the North Atlantic, we can now dismiss the critical depth hypothesis as a valid explanation for bloom initiation,” he wrote in the report.

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Michael Behrenfeld | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>