Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding common ground fosters understanding of climate change

18.02.2014
Grasping the concept of climate change and its impact on the environment can be difficult. Establishing common ground and using models, however, can break down barriers and present the concept in an easily understood manner.

In a presentation at this year's meeting of the American Association for the Advancement of Science, Michigan State University systems ecologist and modeler Laura Schmitt-Olabisi shows how system dynamics models effectively communicate the challenges and implications of climate change.

"In order to face the ongoing challenges posed by climate adaptation, there is a need for tools that can foster dialogue across traditional boundaries, such as those between scientists, the general public and decision makers," Schmitt-Olabisi said. "Using boundary objects, such as maps, diagrams and models, all groups involved can use these objects to have a discussion to create possible solutions."

Schmitt-Olabisi has vast experience working directly with stakeholders using participatory model-building techniques. She uses a model of a hypothetical heat wave in Detroit to illustrate the implications of climate change.

Climate change is anticipated to increase the frequency and intensity of heat waves in the Midwest, which could potentially claim hundreds or thousands of lives. Hot weather kills more people in the United States annually than any other type of natural disaster, and the impacts of heat on human health will be a major climate change adaptation challenge.

To better understand urban health systems and how they respond to heat waves, Schmitt-Olabisi's team interviewed urban planners, health officials and emergency managers. They translated those interviews into a computer model along with data from earlier Midwestern heat waves.

Participants are able to manipulate the model and watch how their changes affect the outcome of an emergency. The exercise revealed some important limitations of previous approaches to reducing deaths and hospitalizations caused by extreme heat.

"The model challenges some widely held assumptions, such as the belief that opening more cooling centers is the best solution," Schmitt-Olabisi said. "As it turns out, these centers are useless if people don't know they should go to them."

More importantly, the model provides a tool, a language that everyone can understand. It is a positive example of how system dynamics models may be used as boundary objects to adapt to climate change, she added.

Overall, Schmitt-Olabisi finds that this approach is a powerful tool for illuminating problem areas and for identifying the best ways to help vulnerable populations. Future research will focus on improving the models' accuracy as well as expanding it beyond the Midwest.

"In order for the models to be deployed to improve decision-making, more work will need be done to ensure the model results are realistic," Schmitt-Olabisi said.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Roadmap for better protection of Borneo’s cats and small carnivores
30.05.2016 | Forschungsverbund Berlin e.V.

nachricht Worldwide Success of Tyrolean Wastewater Treatment Technology
27.05.2016 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>