Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Final FACE Harvest Reveals Increased Soil Carbon Storage Under Elevated Carbon Dioxide

07.03.2012
Elevated carbon dioxide concentrations can increase carbon storage in the soil, according to results from a 12-year carbon dioxide-enrichment experiment at Oak Ridge National Laboratory.

The increased storage of carbon in soil could help to slow down rising atmospheric carbon dioxide concentrations.

The Department of Energy-sponsored free-air carbon dioxide-enrichment, or FACE, experiment officially ended in 2009. The conclusion and final harvest of the ORNL FACE experiment provided researchers with the unique opportunity to cut down entire trees and to dig in the soil to quantify the effects of elevated carbon dioxide concentrations on plant and soil carbon.

In a paper published in Global Change Biology, Colleen Iversen, ORNL ecosystem ecologist, and her colleagues quantified the effects of elevated carbon dioxide concentrations on soil carbon by excavating soil from large pits that were nearly three feet deep. Researchers saw an increase in soil carbon storage under elevated carbon dioxide concentrations, a finding that was different from the other FACE experiments in forests.

Researchers found the increase in carbon storage even in deeper soil.

“Under elevated carbon dioxide, the trees were making more, deeper roots, which contributed to the accumulation of soil carbon,” Iversen said.

Iversen pointed out that processes such as microbial decomposition and root dynamics change with soil depth, and information on processes occurring in deeper soil will help to inform large-scale models that are projecting future climatic conditions.

Co-authors on the paper, “Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of carbon dioxide-enrichment” are ORNL’s Charles Garten and Richard Norby, FACE project leader; and Chapman University’s Jason Keller.

The research was sponsored by the DOE Office of Science. ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Image: http://www.ornl.gov/info/press_releases/photos/FACE1.JPG

Caption: From the left, ORNL's Joanne Childs, Colleen Iversen and Rich Norby dig soil pits and excavate roots and soil at the FACE site.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Emma Macmillan | Newswise Science News
Further information:
http://www.ornl.gov/news

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>