Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiddler crabs reveal honesty is not always the best policy

12.11.2008
Dishonesty may be more widespread in the animal kingdom than previously thought.

A team of Australian ecologists has discovered that some male fiddler crabs “lie” about their fighting ability by growing claws that look strong and powerful but are in fact weak and puny. Published this week in the British Ecological Society's journal Functional Ecology, the study is the first direct evidence that crabs “bluff” about their fighting ability.

The signals animals send each other about their fighting prowess - and the honesty of these signals - is a long-standing problem in evolutionary biology. Despite their size - they are just two centimetres across - fiddler crabs are ideal for studying dishonesty in signalling. This is because males have one claw that is massively enlarged (which they use to attract females or fight rival males) and if they lose this claw during fights they can grow a replacement. In most species the new claw is identical to the lost one, but some species “cheat” by growing a new claw that looks like the original but is cheaper to produce because it is lighter and toothless.

According to lead author of the study, Dr Simon Lailvaux of the University of New South Wales: “What’s really interesting about these 'cheap' claws is that other males can’t tell them apart from the regular claws. Males size each other up before fights, and displaying the big claw is a very important part of this process.”

Dr Lailvaux and colleagues from the Australian National University measured the size of the major claw in male fiddler crabs, and two elements of fighting ability - claw strength and ability to resist being pulled from a tunnel. They found that while the size of an original claw accurately reflects its strength and the crab's ability to avoid being pulled out of its burrow, this relationship does not hold true for a regenerated claw.

“This means that while males can gain an idea of the performance abilities of males with original claws from the size of those major claws, regenerated claws don’t reveal any information on performance capacities. Males with regenerated claws can 'bluff' their fighting ability, like bluffing in a poker game. They’re not good fighters, but the deceptive appearance of their claw allows them to convince other males that it’s not worth picking a fight with them. The only time it doesn’t work is when regenerated males hold territories, which means they can’t go around choosing their opponents - they have to fight everyone who challenges them, and eventually someone will come along and expose their bluff.” Lailvaux explains.

The study is important because it helps shed light on an issue - dishonesty - that is by definition hard to study. “One of the reasons we don’t know a huge amount about dishonesty is because it’s tough to pick up on it. Dishonest signals are designed to be difficult to detect, so to have a system like fiddler crabs where we’re able to do experiments and test hypotheses about dishonesty is pretty cool,” he says.

The results also have important implications for individual reproductive success and survival, as understanding the mechanisms and consequences of dishonesty is essential to uncovering the full story of how these and other animals live, die and reproduce.

According to Lailvaux: “By studying exactly how animals fight, and what physiological and performance capacities enable males to win fights, we’re getting closer to identifying which traits are likely to be generally important for male combat. Honest signalling is important for several reasons, primarily because it’s important that fights don’t always escalate into bloody violence. Fighting can be costly in terms of time and energy, and it’s in an individual’s best interest to avoid risking being injured in a fight, so one of the reasons why we think honest signalling has evolved is because animals need to have a diplomatic option for settling disputes, as opposed to duking it out with every male that comes along. If there’s a way for individuals to assess beforehand which males they are likely to lose to in a fight and which ones they are able to beat, then that allows them to plan accordingly.”

Fiddler crabs live in mangrove swamps and mudflats. There are around 100 species worldwide. Despite their propensity for dishonesty, the name fiddler crab comes from the fact that while waving their big claw to attract females they look like they are playing the violin.

Simon P Lailvaux, Leeann T Reaney and Patricia R Y Backwell (2008). Dishonesty signalling of fighting ability and multiple performance traits in the fiddler crab Uca mjoebergi. Functional Ecology, doi: 10.1111/j.1365-2435.2008.01501.x, is published online on 12 November 2008.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>