Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiddler crabs reveal honesty is not always the best policy

12.11.2008
Dishonesty may be more widespread in the animal kingdom than previously thought.

A team of Australian ecologists has discovered that some male fiddler crabs “lie” about their fighting ability by growing claws that look strong and powerful but are in fact weak and puny. Published this week in the British Ecological Society's journal Functional Ecology, the study is the first direct evidence that crabs “bluff” about their fighting ability.

The signals animals send each other about their fighting prowess - and the honesty of these signals - is a long-standing problem in evolutionary biology. Despite their size - they are just two centimetres across - fiddler crabs are ideal for studying dishonesty in signalling. This is because males have one claw that is massively enlarged (which they use to attract females or fight rival males) and if they lose this claw during fights they can grow a replacement. In most species the new claw is identical to the lost one, but some species “cheat” by growing a new claw that looks like the original but is cheaper to produce because it is lighter and toothless.

According to lead author of the study, Dr Simon Lailvaux of the University of New South Wales: “What’s really interesting about these 'cheap' claws is that other males can’t tell them apart from the regular claws. Males size each other up before fights, and displaying the big claw is a very important part of this process.”

Dr Lailvaux and colleagues from the Australian National University measured the size of the major claw in male fiddler crabs, and two elements of fighting ability - claw strength and ability to resist being pulled from a tunnel. They found that while the size of an original claw accurately reflects its strength and the crab's ability to avoid being pulled out of its burrow, this relationship does not hold true for a regenerated claw.

“This means that while males can gain an idea of the performance abilities of males with original claws from the size of those major claws, regenerated claws don’t reveal any information on performance capacities. Males with regenerated claws can 'bluff' their fighting ability, like bluffing in a poker game. They’re not good fighters, but the deceptive appearance of their claw allows them to convince other males that it’s not worth picking a fight with them. The only time it doesn’t work is when regenerated males hold territories, which means they can’t go around choosing their opponents - they have to fight everyone who challenges them, and eventually someone will come along and expose their bluff.” Lailvaux explains.

The study is important because it helps shed light on an issue - dishonesty - that is by definition hard to study. “One of the reasons we don’t know a huge amount about dishonesty is because it’s tough to pick up on it. Dishonest signals are designed to be difficult to detect, so to have a system like fiddler crabs where we’re able to do experiments and test hypotheses about dishonesty is pretty cool,” he says.

The results also have important implications for individual reproductive success and survival, as understanding the mechanisms and consequences of dishonesty is essential to uncovering the full story of how these and other animals live, die and reproduce.

According to Lailvaux: “By studying exactly how animals fight, and what physiological and performance capacities enable males to win fights, we’re getting closer to identifying which traits are likely to be generally important for male combat. Honest signalling is important for several reasons, primarily because it’s important that fights don’t always escalate into bloody violence. Fighting can be costly in terms of time and energy, and it’s in an individual’s best interest to avoid risking being injured in a fight, so one of the reasons why we think honest signalling has evolved is because animals need to have a diplomatic option for settling disputes, as opposed to duking it out with every male that comes along. If there’s a way for individuals to assess beforehand which males they are likely to lose to in a fight and which ones they are able to beat, then that allows them to plan accordingly.”

Fiddler crabs live in mangrove swamps and mudflats. There are around 100 species worldwide. Despite their propensity for dishonesty, the name fiddler crab comes from the fact that while waving their big claw to attract females they look like they are playing the violin.

Simon P Lailvaux, Leeann T Reaney and Patricia R Y Backwell (2008). Dishonesty signalling of fighting ability and multiple performance traits in the fiddler crab Uca mjoebergi. Functional Ecology, doi: 10.1111/j.1365-2435.2008.01501.x, is published online on 12 November 2008.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>