Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibertect Absorbent Can Clean Gulf Oil Spill’s Crude, Hold Toxic Oil and Mustard Vapors

11.06.2010
As workers battle the Gulf of Mexico oil spill and officials attempt to decontaminate a clam boat that dredged up old munitions containing mustard gas, a Texas Tech University researcher said his product Fibertect® can handle both dirty jobs.

Seshadri Ramkumar, an associate professor of nonwoven technologies, said the Texas Tech-created nonwoven cotton carbon absorbent wipe can clean up crude oil and adsorb toxic polycyclic aromatic hydrocarbon vapors reportedly sickening oil spill clean-up crew members.

Also, Fibertect® has been tested to successfully remediate mustard vapors such as those found from dumped munitions discovered this week by the crew members aboard the clamming boat off the coast of Long Island.

“Last week, Fibertect® was approved for use as a sorbent by the U.S. Environmental Protection Agency,” Ramkumar said. “It definitely has applications for cleaning up the oil spill or this clam boat. Our wipe material is unique from any others in that it easily absorbs liquids, and it has vapor-holding capacity. No product to my knowledge has the capacity to do both.”

A recent report from the National Oceanic and Atmospheric Administration detected low levels of polycyclic aromatic hydrocarbons associated with the Deepwater Horizon oil spill, Ramkumar said. Also, such compounds were found at a depth of 400 meters, showing they have not evaporated.

Fibertect® already has proven that it can also adsorb toxic fumes associated with chemical remediation, he said. Evaluation by Lawrence Livermore National Laboratory found that it can retain offgassing mustard vapors efficiently and does not shed loose particles.

Originally developed to protect the U.S. military from chemical and biological warfare agents, Fibertect® contains a fibrous activated carbon center that is sandwiched between layers.

The top and bottom layers, made from raw cotton, can absorb oil while the center layer holds volatile compounds such as the polycyclic aromatic hydrocarbons, or blistering agents such as mustard vapors or other toxic chemicals.

Ramkumar said his latest research shows raw cotton-carbon Fibertect® can absorb oil up to 15 times its weight. Unlike synthetic materials like polypropylene that are currently used in many oil containment booms, Fibertect® made from raw cotton and carbon is environmentally friendly. It is available commercially in multiple forms by First Line Technology.

“Fibertect® already has proven to be effective in the bulk decontamination of chemical warfare agents and toxic industrial chemicals, but our proposal here is to use it to aid in the clean-up efforts in the Gulf,” said Amit Kapoor, president of First Line Technology “Fibertect® allows for a green, environmentally safe, biodegradable technology that is perfect for the expanding effort to protect and decontaminate coastal lands and wildlife. We welcome the opportunity to work with the government, BP or anyone else in a joint effort to defend and preserve our planet.”

CONTACT: Seshadri Ramkumar, associate professor of nonwoven technologies, The Institute of Environmental and Human Health, Texas Tech University, (806) 885-4567, or s.ramkumar@ttu.edu; Amit Kapoor, president, First Line Technology, (703) 995-7510 or akapoor@firstlinetech.com

Seshadri Ramkumar | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>