Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fern's evolution gives arsenic tolerance that may clean toxic land

11.06.2010
Isolating a gene that allows a type of fern to tolerate high levels of arsenic, Purdue University researchers hope to use the finding to create plants that can clean up soils and waters contaminated by the toxic metal.

The fern Pteris vittata can tolerate 100 to 1,000 times more arsenic than other plants. Jody Banks, a professor of botany and plant pathology, and David Salt, a professor of horticulture, uncovered what may have been an evolutionary genetic event that creates an arsenic pump of sorts in the fern.

"It actually sucks the arsenic out of the soil and puts it in the fronds," Banks said. "It's the only multi-cellular organism that can do this."

Without a genome sequenced for Pteris vittata, Banks and Salt used a method of gene identification called yeast functional complementation. They combined thousands of different Pteris vittata genes into thousands of yeast cells that were missing a gene that makes them tolerant to arsenic.

The yeast was exposed to arsenic, with most of it dying. The yeast strains that lived had picked up the genes from Pteris vittata that convey arsenic resistance.

To confirm that this was the correct gene, its function was knocked down and the plant was exposed to arsenic. Without the gene functioning properly, the plant could not tolerate arsenic.

"It tells us that this gene is necessary for the plant to function on arsenic," said Banks, whose findings were published in the early online version of the journal Plant Cell. "We looked for a similar gene in the plant Arabidopsis. We couldn't find it. It can't be found in any flowering plant."

Banks and Salt found that the protein encoded by this gene ends up in the membrane of the plant cell's vacuole. Salt said the protein acts as a pump, moving arsenic into the cell's equivalent of a trashcan.

"It stores it away from the cytoplasm so that it can't have an effect on the plant," Salt said.

Banks said understanding how the Pteris vittata functions with arsenic could lead to ways to clean up arsenic-contaminated land.

"Potentially you could take these genes and put them in any organism that could suck the arsenic out of the soil," Banks said.

Salt said rice plants could be modified with the gene to store arsenic in the roots of plants - instead of rice grains - in contaminated paddies.

Banks and Salt found another gene in Pteris vittata that looks almost exactly the same as the one that controls arsenic tolerance. When the fern was exposed to arsenic, the confirmed arsenic-tolerance gene increased its expression while the similar gene did not.

Salt said the gene that regulates arsenic tolerance could be a duplicate of the other that has changed slightly to give itself a new function.

"The fact that it has these two genes could be a sign of evolution," Salt said. "One of the thoughts of gene evolution is that one copy could continue to do what it has always done, while the duplicate can develop another function."

The plant might have evolved to accumulate arsenic, Banks and Salt theorized, as a defense against animals or insects eating them.

Banks hopes findings such as this will lead to more research emphasis on non-flowering plants. She said there are characteristics in plants such as Pteris vittata that cannot be found in other organisms.

The next step in their research is to put the arsenic-tolerance gene from Pteris vittata into Arabidopsis to see whether it gives the new plant the same characteristics.

The National Science Foundation funded the research.

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2010/100610BanksFern.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>