Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fern's evolution gives arsenic tolerance that may clean toxic land

Isolating a gene that allows a type of fern to tolerate high levels of arsenic, Purdue University researchers hope to use the finding to create plants that can clean up soils and waters contaminated by the toxic metal.

The fern Pteris vittata can tolerate 100 to 1,000 times more arsenic than other plants. Jody Banks, a professor of botany and plant pathology, and David Salt, a professor of horticulture, uncovered what may have been an evolutionary genetic event that creates an arsenic pump of sorts in the fern.

"It actually sucks the arsenic out of the soil and puts it in the fronds," Banks said. "It's the only multi-cellular organism that can do this."

Without a genome sequenced for Pteris vittata, Banks and Salt used a method of gene identification called yeast functional complementation. They combined thousands of different Pteris vittata genes into thousands of yeast cells that were missing a gene that makes them tolerant to arsenic.

The yeast was exposed to arsenic, with most of it dying. The yeast strains that lived had picked up the genes from Pteris vittata that convey arsenic resistance.

To confirm that this was the correct gene, its function was knocked down and the plant was exposed to arsenic. Without the gene functioning properly, the plant could not tolerate arsenic.

"It tells us that this gene is necessary for the plant to function on arsenic," said Banks, whose findings were published in the early online version of the journal Plant Cell. "We looked for a similar gene in the plant Arabidopsis. We couldn't find it. It can't be found in any flowering plant."

Banks and Salt found that the protein encoded by this gene ends up in the membrane of the plant cell's vacuole. Salt said the protein acts as a pump, moving arsenic into the cell's equivalent of a trashcan.

"It stores it away from the cytoplasm so that it can't have an effect on the plant," Salt said.

Banks said understanding how the Pteris vittata functions with arsenic could lead to ways to clean up arsenic-contaminated land.

"Potentially you could take these genes and put them in any organism that could suck the arsenic out of the soil," Banks said.

Salt said rice plants could be modified with the gene to store arsenic in the roots of plants - instead of rice grains - in contaminated paddies.

Banks and Salt found another gene in Pteris vittata that looks almost exactly the same as the one that controls arsenic tolerance. When the fern was exposed to arsenic, the confirmed arsenic-tolerance gene increased its expression while the similar gene did not.

Salt said the gene that regulates arsenic tolerance could be a duplicate of the other that has changed slightly to give itself a new function.

"The fact that it has these two genes could be a sign of evolution," Salt said. "One of the thoughts of gene evolution is that one copy could continue to do what it has always done, while the duplicate can develop another function."

The plant might have evolved to accumulate arsenic, Banks and Salt theorized, as a defense against animals or insects eating them.

Banks hopes findings such as this will lead to more research emphasis on non-flowering plants. She said there are characteristics in plants such as Pteris vittata that cannot be found in other organisms.

The next step in their research is to put the arsenic-tolerance gene from Pteris vittata into Arabidopsis to see whether it gives the new plant the same characteristics.

The National Science Foundation funded the research.

Abstract on the research in this release is available at:

Brian Wallheimer | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>