Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster water flow means greater diversity of invertebrate marine life

18.11.2010
On the rocks just beneath the tides, the faster the water is moving in an area, the greater the variety of invertebrate creatures that will live there. Understanding that water flow is a strong predictor of diversity could be a huge boon to efforts to manage coastal ecosystems.

One of biggest factors promoting the diversity of coastal ocean life is how fast the water flows, according to new research by ecologists at Brown University. Experiments and observation in Palau, Alaska, and Maine showed that the faster the flow, the greater the number of invertebrate species that live on rocks under the water.

The findings, published the week of Nov. 15 in the journal Ecology Letters, could help improve management of delicate and complex coastal ecosystems, said James Palardy, a former Brown doctoral student and the paper’s lead author. Finding the fastest water could point scientists to areas where diversity is likely greatest — and perhaps especially worthy of protection — and to zones where invasive species could establish their first beachheads.

Jon Witman, professor of ecology and environmental biology and Palardy’s co-author on the paper, said the results were clear and consistent at all three regions, including in Maine and Alaska where they experimentally manipulated water flow speed.

“It totally blew us a way that we got almost identical results in two marine regions of the world separated by 4,000 miles with completely different regional diversities, and no species shared in common,” Witman said. “It’s a wake-up call saying that water flow is a really strong predictor of how many species are present in a particular area of the ocean.”

The reason why faster flow seems to promote diversity, Witman said, is that it allows for the larvae of rock-dwelling invertebrates, such as barnacles, sea squirts, corals and sponges, to spread farther. Although the environments are quite different, it’s somewhat analogous to how trees and flowers can disperse their seeds farther in a stiff wind.

Novel experiment

Palardy and Witman are not the first to observe a connection between water flow and diversity, but they are the first researchers to prove it with experiments. The research began five years ago when the pair started brainstorming about how they might make the important scientific transition from being able to notice the phenomenon to being able to produce and test it.

The pair’s goal was to speed up water flow without resorting to expensive and short-lived battery-powered pumps. Instead, the ecologists relied on simple physics that require a volume of water to flow faster when it moves through a narrowed space.

Based on prototypes developed in a giant flume in the basement of the BioMed research building at Brown, they built channels about 7 feet long and about 18 inches high. They lined the walls with plates where organisms could latch on and grow. The test channels narrowed to about half their width in the middle, taking on a bow tie shape. The control channels remained the same width throughout. The control and test channels were placed about 3 to 6 feet below the lowest tide in each of two sites in Maine and Alaskan coastal waters.

In every case they found that the number of different species on the plates in the test channels was much higher than on the plates in the control channels. The greater diversity was no flash in the pan, either. The pattern was visible from early stages and persisted for more than a year of study. Witman also surveyed natural areas in Palau, and Palardy and Witman did the same in Alaska, finding similar effects in areas with faster flow.

Witman said his hope is that the work will not just explain greater biodiversity but will help stem the tide of its loss.

“There’s a global biodiversity crisis where we’re losing species,” he said. “Ecology is very much concerned with sustaining natural processes.”

Funding for the research came from the National Oceanographic and Atmospheric Administration, the National Science Foundation, and Abt Associates Inc., a Cambridge, Mass., and Washington, D.C.-based consulting firm where Palardy now works as a senior environmental analyst.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>