Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

False light: Reflection from human structures leads creatures into peril

09.01.2009
Insects, others mistake dark smooth surfaces for water surface

Smooth, dark buildings, vehicles and even roads can be mistaken by insects and other creatures for water, according to a Michigan State University researcher, creating "ecological traps" that jeopardize animal populations and fragile ecosystems.

It's the polarized light reflected from asphalt roads, windows -- even plastic sheets and oil spills -- that to some species mimics the surface of the water they use to breed and feed. The resulting confusion could drastically disrupt mating and feeding routines and lead insects and animals into contact with vehicles and other dangers, Bruce Robertson said.

An ecologist studying at the W.K. Kellogg Biological Station in Hickory Corners, north of Kalamazoo, Robertson said polarized light reflected from man-made structures can overwhelm natural cues to animal behavior. Dragonflies can be prompted to lay eggs on roads or parking lots instead of water, for example, and such aquatic insects are at the center of the food web. Insect population crashes can impact higher levels of the food chain.

"Any kind of shiny, black object -- oil, solar cells, asphalt -- the closer they are to wetlands, the bigger the problem," he said.

Predators following misdirected insect prey then also can find themselves in danger.

The importance of natural light to creatures' ability to navigate -- and the impacts of visible light pollution from man-made sources -- are well understood. Those include the tendency of newly hatched sea turtles to move from their beach nests toward landward light sources instead of following moonlight to the safety of open water. Horizontally polarized light has been found to be a reliable cue for creatures to locate water, Robertson said, and now he and fellow researchers are discovering the effects of light reflected from man-made structures.

Robertson worked with Gabor Horvath from the biooptics laboratory at Lorand Eotvos University in Budapest, Hungary, and other researchers. Their findings were reported in Frontiers in Ecology and the Environment Jan. 7. That journal is published by the Ecological Society of America (www.esa.org).

Although the research highlights new concerns about human impact on native species and ecological communities, it suggests the importance of building with alternative materials and, when necessary, employing mitigation strategies. Those might include adding white curtains to dark windows or adding white hatching marks to asphalt.

There also might be potential for turning it to an advantage, Robertson said. In locations where trees are being destroyed by insect infestations, for example, "you may be able to create massive polarized light traps to crash bark beetle populations," if such species are found to be responsive to polarized light cues.

Bruce Robertson | EurekAlert!
Further information:
http://www.msu.edu
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>