Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme weather postpones the flowering time of plants

05.11.2008
A severe drought period changes nature as much as a decade of global warming

Extreme weather events have a greater effect on flora than previously presumed. A one-month drought postpones the time of flowering of grassland and heathland plants in Central Europe by an average of 4 days.

With this a so-called 100-year drought event equates to approx. a decade of global warming. The flowering period of an important early flowerer, the common Birds-foot Trefoil (Lotus corniculatus) was even shortened by more than a month due to heavy rain and started flowering early by almost one month.

In a study conducted by the University of Bayreuth and the Helmholtz-Centre for Environmental Research (UFZ) researchers came to this conclusion. Using experimental plots in Bayreuth the researchers generated artificial heavy rain and drought in their experiment and the effects on ten different plant species were observed accordingly over a two-year period. With climate change it is expected that such extreme weather events will increase in frequency and intensity, which entails a risk for animal-plant interactions and ecological services. In this respect it is conceivable that the synchronisation between flowering plants and pollinating insects could be uncoupled and the rhythm of evolution lost due to extreme weather events. For example, the activity of pollinating insects is determined more so by temperatures as opposed to changes in rainfall, as researchers have reported in the scientific journal Global Change Biology.

Changes to the flowering time of plants are regarded as one of the most evident signs of global warming. Other studies have already shown that since 1960 the beginning of Spring has been postponed in the northern hemisphere by an average of 2.5 days per decade. Although forecasts like the IPCC-Report 2007 reckon with a more considerable increase in extreme weather events, the effects of such events on ecology have previously been researched very little.

Scientists working with Prof. Anke Jentsch have therefore set up an experimental site in the ecological botanical garden in Bayreuth, to investigate the effects of extreme weather events such as droughts or heavy rains. The investigation area with an average annual temperature of 8.2 degree Celsius and 724 millimeters annual rainfall is situated in a transitional zone between the Atlantic and Continental climates. One hundread plants of each widely distributed species like for example Yorkshire Fog (Holcus lanatus), Ribwort Plantain (Plantago lanceolata) and Heather (Calluna vulgaris) were planted on each of 30 4m2 experimental plots. Using plastic tarpaulin covers the researchers were able to simulate an extreme dry period of 32 days and a period of extreme rain using artificial rain with 170 millimeters of rainfall lasting 14 days, corresponding to a local 100-year extreme weather event.

Both simulations correspond to the historical highest values that were recorded in Bayreuth in the summer of 1976 and 1977. The sites were observed over two years and the flowering time of all plants recorded. During this period it transpired that two weeks of heavy rain shortened the flowering period by 3 to 5 days, and in the case of an important spring-time the flowering period was even shortened by 37 days and started 26 days earlier.

Conversely with a long drought period of one month: on average the plants flowered in total for four days longer and also four days earlier than usual. "A single extreme drought can therefore have similar effects on flowering as a decade of global warming", explains Anke Jentsch. "The climate change with more frequent extreme weather events will have extensive consequences for ecosystems and interactions between species."

Publikation:
Anke Jentsch, Juergen Kreyling, Jegor Boettcher-Treschkow and Carl Beierkuhnlein (2008): Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Global Change Biology
doi: 10.1111/j.1365-2486.2008.01690.x
http://www3.interscience.wiley.com/journal/121448202/abstract
More Information:
Prof Anke Jentsch
Helmholtz Centre for Environmental Research (UFZ) / University of Bayreuth
Phone: 0341-235- 2100, 0921-552290
http://www.ufz.de/index.php?en=1921
and
Dr Jürgen Kreyling
Helmholtz Centre for Environmental Research (UFZ) / University of Bayreuth
Phone: 0921-552256
http://www.bitoek.uni-bayreuth.de/biogeo/de/mitarbeiter/mit/mitarbeiter_detail.php?id_obj=25760
http://www.ufz.de/index.php?en=5151
or
Tilo
Arnhold (UFZ press officer)
Phone: +49-341-235-1269
Email: presse@ufz.de
Links:
Research project EVENT:
http://www.old.uni-bayreuth.de/departments/biogeo/de/forschung/klimafolgen/deutsch.htm
You can read more about biological invasions and other issues concerning biodiversity in a special edition of the UFZ newsletter for the 9th Meeting of the Conference of the Parties to the Convention on Biological Diversity (COP9),
that was from 19 to 30 May in Bonn.
http://www.ufz.de/index.php?en=10690
At the Helmholtz Centre for Environmental Research (UFZ) scientists research the causes and consequences of far-reaching environmental changes. They study water resources, biological diversity, the consequences of climate change and adaptation possibilities, environmental and biotechnologies, bio energy, the behaviour of chemicals in the environment and their effect on health, as well as modelling and social science issues. Their guiding research principle is supporting the sustainable use of natural resources and helping to secure these basic requirements of life over the long term under the influence of global change. The UFZ employs 900 people at its sites in Leipzig, Halle and Magdeburg. It is funded by the German government and by the states of Saxony and Saxony-Anhalt.

The Helmholtz Association helps solve major, pressing challenges facing society, science and the economy with top scientific achievements in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space. With 25,700 employees in 15 research centres and an annual budget of around EUR 2.3 billion, the Helmholtz Association is Germanys largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Tilo Arnhold | Helmholtz Centre
Further information:
http://www.ufz.de/index.php?en=17357

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>