Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extinction risk factors for New Zealand birds today differ from those of the past

03.08.2012
What makes some species more prone to extinction? A new study of nearly 300 species of New Zealand birds — from pre-human times to the present — reveals that the keys to survival today differ from those of the past.

The results are important in light of the growing number of studies that try to predict which species could be lost in the future based on what kinds of species are considered most threatened today, said lead author Lindell Bromham of Australian National University.

In the roughly 700 years since humans arrived in the remote islands that make up New Zealand, more than one out of four of New Zealand's native bird species have been wiped out.

Gone are birds such as the massive Haast's eagle, which weighed up to 33 pounds (15kg), and the giant moa, a flightless bird that stood up to ten feet (3m) tall.

Many species were hunted to extinction. Others were eaten by the animals humans brought with them — such as cats, rats and weasels — or pushed off their land as humans cleared and burned forests to make way for farms and pastures.

In a new study, a team of researchers examined whether biological traits such as body size might help scientists predict which species were likely to perish, and whether those risk factors held up over time.

To find out, they analyzed extinction patterns for New Zealand's native birds across four time periods in New Zealand's history, from pre-human times to the present. The data set included 274 species of living and extinct birds, such as ducks, penguins, geese, gulls, pigeons, parakeets and wrens.

The researchers looked for the biological traits that best predicted extinction risk in each time period. After accounting for similarities among closely related species, the researchers found that the traits that make some species more vulnerable today differ from what made species more prone to extinction in the past.

When the researchers compared the last 700 years of human occupation to pre-human times, for example, they found that flightless species such as moa and rails have been consistently hard-hit — presumably because species that can't fly make easy snacks.

"There was no difference in extinction risk between flightless and flighted species until humans arrived," said co-author Robert Lanfear, currently a visiting researcher at the U.S. National Evolutionary Synthesis Center.

Other risk factors for extinction changed with each new wave of human settlement.

In the period after Polynesians appeared until Europeans arrived in the 1820s, for example, bigger species were more likely to die out. According to one study the extinct giant moa — a group of ostrich-like birds that weighed up to 600 pounds (270 kg) — was hunted to extinction within less than one hundred years.

The researchers were surprised to find that after Europeans arrived, size was no longer a factor. Instead, species having males and females of different color were the hardest hit —possibly because those species were prized for museum collections.

Today, species that nest on the ground and lay only a few eggs at a time are considered most threatened, including the iconic kiwi, and a giant flightless parrot called the kakapo — two birds found only in New Zealand.

Why do the extinction risk factors for New Zealand birds living today differ from those of the past? Size, for example, was only associated with extinction risk in the period after Polynesians arrived but before European settlement.

"It could be that that's when birds were most heavily hunted for food," Bromham said. "Or it might be that all the largest birds went extinct soon after human arrival, so now there are no longer enough large species to spot the raised extinction risk!"

"If extinction has already caused the loss of a susceptible trait, then this trait may no longer be relevant to surviving species even though it is still the original cause of past extinctions. This is known as an 'extinction-filter'," explained co-author Phillip Cassey of the University of Adelaide in Australia.

For studies of extinction risk, the results mean we should proceed with caution when analyzing different time periods. "We can't guarantee that the patterns we detect in contemporary extinction risk are the same as those that have caused extinctions in the past, or will be the ones that are most important in the future," Bromham said.

Marcel Cardillo of Australian National University and Gillian Gibb of Massey University in New Zealand were also authors on this study.

The team's findings were published online on August 1, 2012 in the journal Proceedings of the Royal Society B.

CITATION: Bromham, L., R. Lanfear, et al. (2012). "Reconstructing past species assemblages reveals the changing patterns and drivers of extinction through time." Proceedings of the Royal Society B. http://dx.doi.org/10.1098/rspb.2012.1437.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the U.S. National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Ecology, The Environment and Conservation:

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter
31.05.2017 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>