Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Extinction risk factors for New Zealand birds today differ from those of the past

What makes some species more prone to extinction? A new study of nearly 300 species of New Zealand birds — from pre-human times to the present — reveals that the keys to survival today differ from those of the past.

The results are important in light of the growing number of studies that try to predict which species could be lost in the future based on what kinds of species are considered most threatened today, said lead author Lindell Bromham of Australian National University.

In the roughly 700 years since humans arrived in the remote islands that make up New Zealand, more than one out of four of New Zealand's native bird species have been wiped out.

Gone are birds such as the massive Haast's eagle, which weighed up to 33 pounds (15kg), and the giant moa, a flightless bird that stood up to ten feet (3m) tall.

Many species were hunted to extinction. Others were eaten by the animals humans brought with them — such as cats, rats and weasels — or pushed off their land as humans cleared and burned forests to make way for farms and pastures.

In a new study, a team of researchers examined whether biological traits such as body size might help scientists predict which species were likely to perish, and whether those risk factors held up over time.

To find out, they analyzed extinction patterns for New Zealand's native birds across four time periods in New Zealand's history, from pre-human times to the present. The data set included 274 species of living and extinct birds, such as ducks, penguins, geese, gulls, pigeons, parakeets and wrens.

The researchers looked for the biological traits that best predicted extinction risk in each time period. After accounting for similarities among closely related species, the researchers found that the traits that make some species more vulnerable today differ from what made species more prone to extinction in the past.

When the researchers compared the last 700 years of human occupation to pre-human times, for example, they found that flightless species such as moa and rails have been consistently hard-hit — presumably because species that can't fly make easy snacks.

"There was no difference in extinction risk between flightless and flighted species until humans arrived," said co-author Robert Lanfear, currently a visiting researcher at the U.S. National Evolutionary Synthesis Center.

Other risk factors for extinction changed with each new wave of human settlement.

In the period after Polynesians appeared until Europeans arrived in the 1820s, for example, bigger species were more likely to die out. According to one study the extinct giant moa — a group of ostrich-like birds that weighed up to 600 pounds (270 kg) — was hunted to extinction within less than one hundred years.

The researchers were surprised to find that after Europeans arrived, size was no longer a factor. Instead, species having males and females of different color were the hardest hit —possibly because those species were prized for museum collections.

Today, species that nest on the ground and lay only a few eggs at a time are considered most threatened, including the iconic kiwi, and a giant flightless parrot called the kakapo — two birds found only in New Zealand.

Why do the extinction risk factors for New Zealand birds living today differ from those of the past? Size, for example, was only associated with extinction risk in the period after Polynesians arrived but before European settlement.

"It could be that that's when birds were most heavily hunted for food," Bromham said. "Or it might be that all the largest birds went extinct soon after human arrival, so now there are no longer enough large species to spot the raised extinction risk!"

"If extinction has already caused the loss of a susceptible trait, then this trait may no longer be relevant to surviving species even though it is still the original cause of past extinctions. This is known as an 'extinction-filter'," explained co-author Phillip Cassey of the University of Adelaide in Australia.

For studies of extinction risk, the results mean we should proceed with caution when analyzing different time periods. "We can't guarantee that the patterns we detect in contemporary extinction risk are the same as those that have caused extinctions in the past, or will be the ones that are most important in the future," Bromham said.

Marcel Cardillo of Australian National University and Gillian Gibb of Massey University in New Zealand were also authors on this study.

The team's findings were published online on August 1, 2012 in the journal Proceedings of the Royal Society B.

CITATION: Bromham, L., R. Lanfear, et al. (2012). "Reconstructing past species assemblages reveals the changing patterns and drivers of extinction through time." Proceedings of the Royal Society B.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the U.S. National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit

Robin Ann Smith | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>