Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expanding dead zones shrinking tropical blue marlin habitat

12.12.2011
The science behind counting fish in the ocean to measure their abundance has never been simple. A new scientific paper authored by NOAA Fisheries biologist Eric Prince, Ph.D., and eight other scientists shows that expanding ocean dead zones – driven by climate change – have added a new wrinkle to that science.

In the December 4 paper published in the scientific journal Nature Climate Change, these scientists sound an alarm that expanding ocean dead zones are shrinking the habitat for high value fish such as marlins in the tropical northeast Atlantic Ocean. As dead zones expand, marlins, other billfish and tunas move into surface waters where they are more vulnerable to fishing. Dead zones are areas in the ocean where oxygen levels are so low that creatures cannot survive over the long term.

“By combining the disciplines of oceanography and fishery biology, we are getting a much clearer picture of how climate driven dead zones are shrinking the habitat for some of the world’s most valuable fish to commercial and recreational fishermen,” Prince said. “With a clearer picture, we will be able to make better management decisions for the long-term health of these species and their ecosystems.”

In the past, Prince has studied the movement of marlins and other billfish in ocean waters off Florida and the Caribbean as well as in the tropical waters of the eastern Pacific. The new paper combines Prince’s research on marlins in the northeast tropical Atlantic Ocean off Africa with oceanographic research in the same waters by Lothar Stramma and his colleagues at the Leibniz Institute of Marine Science in Kiel, Germany, as well as scientists at the University of Miami Rosensteil School of Marine and Atmospheric Science.

Prince tagged blue marlin, one of the most valuable recreational species on the planet, with pop up satellite tracking devices to record their horizontal and vertical movement. He compared this information on fish movement with detailed oceanographic maps developed by Stramma and his colleagues on the same ocean areas showing the location of zones with low dissolved oxygen. Prince, Stramma and Sunke Schmidtko, who was at NOAA’s Pacific Marine Environmental Laboratory in Seattle at the time of the research, are the three equally contributing first authors of the paper.

Blue marlins and many other billfish are high energy fish that need large amounts of dissolved oxygen. By comparing the movement of the blue marlins and the location of low-oxygen areas, the scientists show that blue marlins venture deeper when dissolved oxygen levels are higher and remain in shallower surface waters when low dissolved oxygen areas encroach on their habitat from below.

“The shrinking of habitat due to expanding dead zones needs to be taken into account in scientific stock assessments and management decisions for tropical pelagic billfish and tuna,” said Prince. “Without taking it into account, stock assessments could be providing false signals that stocks are healthy, when in fact they are not, thus allowing overfishing that further depletes these fish stocks and threatens the sustainability of our fisheries.”

While the new paper focuses on the tropical northeast Atlantic Ocean off Africa, the expansion of low-oxygen zones is occurring in all tropical ocean basins and throughout the subarctic Pacific, making the compression of habitat a global issue. The problem for pelagic fishes in the tropical Atlantic is particularly acute, the authors note, because many of these fish species and the unintended catch, called bycatch, are already fully exploited or overfished.

The new paper follows earlier research by Prince published in 2010 in Fisheries Oceanography based on tagging of marlins and sailfish in the waters off Florida and the Caribbean, which also showed these billfish prefer oxygen-rich waters close to the surface and move away from waters low in dissolved oxygen.

To read the new paper, “Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fish,” visit the Nature Climate Change website.

You can also visit NOAA Fisheries’ website to learn more about related programs, including international activities or our regional saltwater recreational fishing action agendas.

Monica Allen | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>