Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic plant species alter ecosystem productivity

11.03.2014

Researchers from the UFZ warn that ecosystems will change dramatically

In their joint publication in the journal „Ecology Letters" German and American biologists have reported an increase in biomass production in ecosystems colonised by non-native plant species. In the face of climate change, these and other changes to ecosystems are predicted to become more frequent, according to the researchers.


Invasive exotic plant species, such as the Turkish Rocket (Bunias orientalis), are often fast-growing and competitive. They may alter ecosystems by gaining dominance, increasing productivity and replacing native plant species. The current study shows that in grassland ecosystems, native generalist herbivores such as voles – which are usually considered as a pest – may provide substantial resistance to plant invasions.

Photo: Harald Auge/UFZ

All over the world, plant and animal species are increasingly encroaching upon ecosystems where they don't belong as a result of human influence. This phenomenon is known as a biological invasion. Observational studies on biological invasions show that the invasion of non-native plant species can alter ecosystems. One important aspect of this is biomass production: compared to intact ecosystems, the productivity of ecosystems with non-native species is considerably higher.

„In such purely observational studies however, it is not possible to differentiate between cause and effect", says Dr. Harald Auge from the Helmholtz Center for Environmental Research (UFZ). „The question is whether exotic plant species prefer to colonise more productive ecosystems, or whether increased productivity is a result of the invasion."

... more about:
»ecosystem »species

To get to the bottom of this question, UFZ researchers joined forces with colleagues from the Martin-Luther University Halle-Wittenberg, the University of Montana, the University of California and the US Forest Service and staged invasions by setting up experimental sites in three disparate grassland regions -in Central Germany, Montana and California, on which 20 native plant species (from the respective region) and 20 exotic plant species were sown.

Researchers investigated whether and to which extent herbivorous small mammals such as mice, voles or ground squirrels as well as mechanical disturbance to the soil would influence exotic plant species colonizing ability.

The experimental design was exactly the same for all three regions to ensure comparability. We wanted to find out whether superordinate relationships were playing a role, irrespective of land use, species compositions and climate differences", explains Dr Auge. When the experimental sites were not subject to any mechanical disturbance and when herbivorous small mammals had open access to the sites, then no differences could be found between the three regions in their reaction to the sowing of exotic species: biomass production was found to be only slightly higher than for ecosystems with exclusively native plant species, and susceptibility to invasions was low.

„The herbivorous small mammals really surprised us", says Dr Auge. „Their presence and appetite is largely responsible for the resistance of grasslands to exotic plant species invasions". If the herbivorous small mammals were excluded using fences or the soil disturbed mechanically or both, then the results were considerably different: ecosystems proved to be less resistant to invasions and biomass production turned out to be considerably higher.

„It was perplexing that an increase in productivity applied to all three (from a climate perspective) completely disparate regions. Hence, there seems to be a universal phenomenon going on: exotic plant species do not necessarily prefer more productive ecosystems -their exotic provenance as such leads to an increased production of biomass, which is thus an effect and not the cause of the invasion", Dr Auge resumes.

So far there has been no explanation as to why exotic plant species increase biomass production so dramatically. It is possible that only those non-native species that are particularly productive and competitive are able to establish successfully in a new area. Another cause could be the lack of parasites and pathogens specialised on these species.

To investigate the long-term reactions of grassland ecosystems on the establishment of non-native plant species, the researchers plan future investigations on the further development of the species on the experimental sites. Dr Auge: „We assume that the non-natives will increasingly crowd out the natives from the ecosystem -a reduction in species richness would imply another dramatic change to native ecosystems." Nicole Silbermann

Photos & links: http://www.ufz.de/index.php?en=32498
 

Publication: Maron, J.L.; Auge, H.; Pearson, D. E.; Korell, L.; Hensen, I.; Suding, K. N.; Stein, C. (2014) Staged invasions across disparate grasslands: effects of consumers, disturbance and seed provenance on productivity and species richness. Ecology Letters 17: 499-507. http://dx.doi.org/10.1111/ele.12250

Further information:

Helmholtz Center for Environmental Research - UFZ

Dr. Harald Auge

Tel.: +49-(0)345-558-5309

http://www.ufz.de/index.php?de=1153

or Tilo Arnhold, Susanne Hufe (UFZ Press)

Tel.: +49-(0)341-235-1635, -1630

http://www.ufz.de/index.php?de=640

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Nicole Silbermann/Tilo Arnhold | UFZ News

Further reports about: ecosystem species

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>