Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution, ecosystems may buffer some species against climate change

06.03.2009
Although ecologists expect many species will be harmed by climate change, some species could be buffered by their potential to evolve or by changes in their surrounding ecosystems.

Researchers at the University of Wisconsin-Madison and the University of Arizona are using a common agricultural insect pest to understand how ecological and evolutionary factors drive population shifts in the face of a changing environment.

A study appearing March 6 in the journal Science shows that both ecological interactions within a food web and the potential for rapid evolutionary adaptation play critical roles in determining how populations of the legume-loving pea aphid fare during increasing bouts of hot weather, one aspect of predicted climate change.

One of the most important lessons of the work is that predictions of the consequences of environmental change on populations must take into account both ecological and evolutionary complexities, says Jason Harmon, a UW-Madison postdoctoral researcher and lead author of the new study.

"If you're interested in environmental change and how species are going to respond to it, you can't just look at a single species in isolation as it is right now. You have to think about those other species around it, and you have to think about the species' potential to change along with the environment," he says.

Bouts of high temperature decrease pea aphid reproduction, but inherited bacteria living symbiotically within the aphids bestow them with a possible evolutionary defense. "Because we can experimentally manipulate aphid bacteria, we have an excellent model system to explore evolutionary adaptation," says University of Arizona professor of ecology and evolutionary biology Nancy Moran, a co-author of the study.

The researchers showed that the degree of heat tolerance conferred by the symbiotic bacteria influenced whether the aphids thrived or succumbed to experimental heat stress in the field. The result shows that the potential for rapid evolution can have a large impact on how populations respond to environmental change, they say.

The detriment of the additional hot days also depended on which of two different predatory ladybeetle species was present, showing that the structures of local food webs may mitigate environmental changes.

"Right now, a lot of work is focused on just individual species," says UW-Madison zoology professor Anthony Ives. "To understand what happens to any one particular species, you need to broaden your scope and consider other species."

While predicting the response of species to climate change is complicated, Ives says, the new study may help de-mystify complex processes by identifying specific factors that are relevant. He hopes that this new work will help other scientists take a broad ecological and evolutionary view while studying the effects of environmental change.

"We're identifying things that people should look for because they could be important, as opposed to saying it's just too complicated," he says. "It's difficult, but not impossible."

Tony Ives | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>