Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution, ecosystems may buffer some species against climate change

06.03.2009
Although ecologists expect many species will be harmed by climate change, some species could be buffered by their potential to evolve or by changes in their surrounding ecosystems.

Researchers at the University of Wisconsin-Madison and the University of Arizona are using a common agricultural insect pest to understand how ecological and evolutionary factors drive population shifts in the face of a changing environment.

A study appearing March 6 in the journal Science shows that both ecological interactions within a food web and the potential for rapid evolutionary adaptation play critical roles in determining how populations of the legume-loving pea aphid fare during increasing bouts of hot weather, one aspect of predicted climate change.

One of the most important lessons of the work is that predictions of the consequences of environmental change on populations must take into account both ecological and evolutionary complexities, says Jason Harmon, a UW-Madison postdoctoral researcher and lead author of the new study.

"If you're interested in environmental change and how species are going to respond to it, you can't just look at a single species in isolation as it is right now. You have to think about those other species around it, and you have to think about the species' potential to change along with the environment," he says.

Bouts of high temperature decrease pea aphid reproduction, but inherited bacteria living symbiotically within the aphids bestow them with a possible evolutionary defense. "Because we can experimentally manipulate aphid bacteria, we have an excellent model system to explore evolutionary adaptation," says University of Arizona professor of ecology and evolutionary biology Nancy Moran, a co-author of the study.

The researchers showed that the degree of heat tolerance conferred by the symbiotic bacteria influenced whether the aphids thrived or succumbed to experimental heat stress in the field. The result shows that the potential for rapid evolution can have a large impact on how populations respond to environmental change, they say.

The detriment of the additional hot days also depended on which of two different predatory ladybeetle species was present, showing that the structures of local food webs may mitigate environmental changes.

"Right now, a lot of work is focused on just individual species," says UW-Madison zoology professor Anthony Ives. "To understand what happens to any one particular species, you need to broaden your scope and consider other species."

While predicting the response of species to climate change is complicated, Ives says, the new study may help de-mystify complex processes by identifying specific factors that are relevant. He hopes that this new work will help other scientists take a broad ecological and evolutionary view while studying the effects of environmental change.

"We're identifying things that people should look for because they could be important, as opposed to saying it's just too complicated," he says. "It's difficult, but not impossible."

Tony Ives | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>