Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European mountain vegetation shows effects of warmer climate

09.01.2012
The decade from 2000 to 2009 was the warmest since global climate has been measured, and while localized studies have shown evidence of changes in mountain plant communities that reflect this warming trend, no study has yet taken a continental-scale view of the situation – until now.

With the publication of "Continent-wide response of mountain vegetation to climate change," scheduled for Advance Online Publication (AOP) in Nature Climate Change on 8 January, researchers from 13 countries report clear and statistically significant evidence of a continent-wide warming effect on mountain plant communities.

The findings are "clearly significant," says Ottar Michelsen, a researcher at the Norwegian University of Science and Technology and one of the article's co-authors. "You can find studies that have shown an effect locally, and where researchers try to say something more globally, but in this case, when you have so many mountains in so many regions and can show an effect, that's a big thing."

The article describes the results of a comprehensive effort to measure plant community changes in the mountains over the whole of Europe, with nearly a decade of time between the sampling efforts. Researchers looked at 60 summit sites and 867 vegetation samples from 17 mountain areas across Europe in 2001 and then revisited the mountain sample sites in 2008. In Norway, researchers studied mountain plots in the Dovre region of central Norway.

By comparing the vegetation found in the sample plots in 2001 and 2008, the researchers were able to see a clear shift in the species in the plots towards species that preferred warmer temperatures.

More specifically, the researchers assigned what they called an altitudinal rank to all 764 plant species included in the study. The rank reflects the temperature at which each species has its optimum performance. And because altitude and temperature are directly correlated in each mountain area (the higher your altitude in the mountains, in general, the colder it will be) the location on the mountain where a plant is found reflects its response to the actual temperature at that location.

By summing the altitudinal ranks for the species in the plots, the researchers then used a mathematical formula to give each plot a "thermic vegetation indicator". The indicator was calculated for each plot for 2001 and 2008, and the change in the indicator over the 7 years between sample periods showed researchers whether the mix of plants in each plot had stayed the same or shifted on average to plant types that preferred either colder or warmer temperatures. They then combined the data for the 17 mountain areas for the two time periods to get a continental-scale view of what kind of change, if any, might be underway.

"The transformation of plant communities on a continental scale within less than a decade can be considered a rapid ecosystem response to ongoing climate warming," the researchers wrote. "Although the signal is not statistically significant for single mountain regions, it is clearly significant when data throughout Europe are pooled."

The finding is significant both because the shift in plant communities could be clearly detected over time, but also because it suggests that plants adapted to colder temperatures that are now found in alpine plant communities will be subject to more competition, which "may lead to declines or even local disappearance of alpine plant species," the researchers note. "In fact, declines of extreme high-altitude species at their lower range margins have recently been observed in the Alps."

Ottar Michelsen | EurekAlert!
Further information:
http://www.ntnu.no

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>