Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU-project for efficient water management in the chemical industry

23.05.2012
The new project E4Water - "Economically and Ecologically Efficient Water Management in the European Chemical Industry" to optimise water use in the European chemical industry has started on May 1st. The E4Water project will develop new integrated methods for more efficient and sustainable industrial water treatment and management.

Water challenges - scarce fresh water resources, stress on aquatic ecosystems and the like - are high on the European and international agenda. Economically and environmentally efficient water management is seen as one of the main strategies for environmental protection in many European countries. Innovative solutions in industrial water use can help further decouple production growth from water use, taking into account local issues.

The chemical industry is a cornerstone of the European economy, converting raw materials into thousands of different products. It is both a major water user and a solution provider for process industry sectors such as mining, industrial biotechnology, health, food, electronics, pulp and paper, and energy. As such, the chemical industry offers significant potential for increasing eco-efficiency in industrial water management throughout the value chain.

The E4Water project will address crucial process industry needs to overcome bottlenecks in and barriers to an integrated and energy-efficient water management. Over a period of four years, 19 international partners, namely industry stakeholders, research partners and end users, will work together to develop new approaches to reduce water use, waste water production and energy use in the chemical industry.

The main objective of E4Water is to develop and test integrated approaches, methods and process technologies. The six industrial case study sites are expected to achieve a reduction of 20-40% in water use, 30-70% in wastewater production, and 15-40% in energy use, as well as an increase of up to 60% in direct economic benefits. In addition to the chemical industry, the project will seek opportunities for cross-fertilization with other industrial sectors.

The project consortium brings together large chemical companies, leading European water sector companies and innovative research and technology development (RTD) centres and universities. The partners are also involved in the Water supply and sanitation Platform (WssTP) and SusChem, the European Technology Platform for Sustainable Chemistry, and actively collaborate with water authorities in different European countries.

Contact: DECHEMA e. V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany,

http://www.dechema.de

Dr. Thomas Track
Tel: +49 69 7564-427
Fax: +49 69 7564-117
track@dechema.de
Dr. Christina Jungfer
Tel: +49 69 7564-364
Fax: +49 69 7564-117
jungfer@dechema.de
Dr. Renata Körfer
Tel: +49 69 7564-619
Fax: +49 69 7564-117
koerfer@dechema.de

Dr. Kathrin Rübberdt | idw
Further information:
http://www.dechema.de
http://www.e4water.eu/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>