Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU could cut emissions by 40 percent at moderate cost

16.01.2014
The costs of achieving a more ambitious EU climate target are estimated to be moderate.

Upscaling greenhouse-gas emissions reduction from the current 20 percent by 2020 to 40 percent by 2030 would be likely to cost less than an additional 0.7 percent of economic activity.

This is a key finding from an international multi-model analysis by the Stanford Energy Modeling Forum (EMF28) and comes at a crucial time, as the European Commission is set to announce next week its plans whether to scale up its efforts on emissions reduction in the next decade.

However, beyond 2040, according to the scientists the costs risk to rise substantially. Technological innovation would be needed to counter this.

“In the next two decades, it is possible to achieve the transformation using existing technologies,” says Brigitte Knopf of the Potsdam Institute for Climate Impact Research, who led the study conducted by a dozen research groups. Thereafter, however, energy-economy system models project different costs. Some simulations show a steep increase after 2040, while others show only a linear increase. One determining factor is the degree to which new technologies can replace old ones. This indicates that technological progress is needed to keep costs in check.

“A clear price signal has to be set today, for instance in the European Emissions Trading System,” says Knopf. “It would provide an incentive for innovation that would prevent energy systems from being locked into long-lasting investments in CO2-intensive technologies, such as coal-fired power plants.”

Current CO2 reductions fall short of achieving long-term climate targets

“The current 20 percent emission reductions by 2020 could fall short of achieving the long-term climate targets set by the EU,” explains Enrica De Cian of the Fondazione Eni Enrico Mattei and the Euro-Mediterranean Center on Climate Change, Italy. “Short-term emissions reductions of at least 40 percent by 2030 are necessary to eventually meet the long-term target of an 80 percent reduction by 2050 aspired by the EU.” The reference year is 1990. The models in the study would actually suggest an even more ambitious short-term target than those 40 percent that are currently under debate.

The analysis confirms the core findings of the much debated EU Energy Roadmap, which details the EU climate and energy strategy. “By setting targets for 2030, the EU would signal its willingness to contribute to the global climate mitigation effort”, De Cian points out. “And a positive reaction of other countries to this signal could foster technological change and innovation within Europe as well.”

Many options to choose from - wind power could expand sevenfold

Options explored by the study to reach the EU climate target range from renewable energies to nuclear energy and energy-efficiency increases. “There’s a wide choice for decision-makers, depending on their preferences, so that’s a good thing,” says Detlef van Vuuren of the PBL Netherlands Environmental Assessment Agency and Utrecht University. “Still, most model calculations optimizing the change of the electricity system project energy from biomass to expand threefold, and from wind even sevenfold by 2050.” This would have to be reflected in a potential future EU target on renewable energy.

One remarkable finding is that Europe could do without relying on the much debated and as yet unproven technology of sequestering CO2 from power plant emissions and injecting it into the ground. This is a new result compared to the Roadmap study. Nonetheless, ‘Carbon Capture and Storage’ (CCS) would be needed to achieve an affordable worldwide transformation.

Robust multi-model assessment of EU Roadmap

The new study is the most systematic comparison of computer simulations of the European energy-economy system to date. It includes the PRIMES model, which had attracted criticism in the past for being the only one used by the European Commission for previous assessments of the energy system. “The more comprehensive approach now allows for a more robust assessment of technologies, costs and infrastructure requirements,” John Weyant says, who leads the Stanford Energy Modeling Forum EMF. This is detailed in the Special Issue of Climate Change Economics. “It shows some very promising opportunities to avoid the risks of unabated climate change.”

Article: Knopf, B., Chen, Y-H. H., De Cian, E., Förster, H., Kanudia, A., Karkatsouli, I., Keppo, I., Koljonen, T., Schuhmacher, K., Van Vuuren, D.P. (2013): Beyond 2020 – Strategies and costs for transforming the European energy system. In a Special Issue of Climate Change Economics Vol.04 [doi: 10.1142/S2010007813400010]

Weblink to the article: http://www.worldscientific.com/doi/pdf/10.1142/S2010007813400010

Weblink to the Special Issue: http://www.worldscientific.com/toc/cce/04/supp01

Weblink to more information on EMF: http://emf.stanford.edu/docs/about_emf/

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate
Weitere Informationen:
http://www.worldscientific.com/doi/pdf/10.1142/S2010007813400010
- Weblink to the article
http://www.worldscientific.com/toc/cce/04/supp01
- Weblink to the Special Issue
http://emf.stanford.edu/docs/about_emf/
- Weblink to more information on EMF

Jonas Viering | PIK Pressestelle
Further information:
http://www.pik-potsdam.de

More articles from Ecology, The Environment and Conservation:

nachricht Worldwide Success of Tyrolean Wastewater Treatment Technology
27.05.2016 | Universität Innsbruck

nachricht How nanoparticles flow through the environment
12.05.2016 | Schweizerischer Nationalfonds SNF

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>