Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU could cut emissions by 40 percent at moderate cost

16.01.2014
The costs of achieving a more ambitious EU climate target are estimated to be moderate.

Upscaling greenhouse-gas emissions reduction from the current 20 percent by 2020 to 40 percent by 2030 would be likely to cost less than an additional 0.7 percent of economic activity.

This is a key finding from an international multi-model analysis by the Stanford Energy Modeling Forum (EMF28) and comes at a crucial time, as the European Commission is set to announce next week its plans whether to scale up its efforts on emissions reduction in the next decade.

However, beyond 2040, according to the scientists the costs risk to rise substantially. Technological innovation would be needed to counter this.

“In the next two decades, it is possible to achieve the transformation using existing technologies,” says Brigitte Knopf of the Potsdam Institute for Climate Impact Research, who led the study conducted by a dozen research groups. Thereafter, however, energy-economy system models project different costs. Some simulations show a steep increase after 2040, while others show only a linear increase. One determining factor is the degree to which new technologies can replace old ones. This indicates that technological progress is needed to keep costs in check.

“A clear price signal has to be set today, for instance in the European Emissions Trading System,” says Knopf. “It would provide an incentive for innovation that would prevent energy systems from being locked into long-lasting investments in CO2-intensive technologies, such as coal-fired power plants.”

Current CO2 reductions fall short of achieving long-term climate targets

“The current 20 percent emission reductions by 2020 could fall short of achieving the long-term climate targets set by the EU,” explains Enrica De Cian of the Fondazione Eni Enrico Mattei and the Euro-Mediterranean Center on Climate Change, Italy. “Short-term emissions reductions of at least 40 percent by 2030 are necessary to eventually meet the long-term target of an 80 percent reduction by 2050 aspired by the EU.” The reference year is 1990. The models in the study would actually suggest an even more ambitious short-term target than those 40 percent that are currently under debate.

The analysis confirms the core findings of the much debated EU Energy Roadmap, which details the EU climate and energy strategy. “By setting targets for 2030, the EU would signal its willingness to contribute to the global climate mitigation effort”, De Cian points out. “And a positive reaction of other countries to this signal could foster technological change and innovation within Europe as well.”

Many options to choose from - wind power could expand sevenfold

Options explored by the study to reach the EU climate target range from renewable energies to nuclear energy and energy-efficiency increases. “There’s a wide choice for decision-makers, depending on their preferences, so that’s a good thing,” says Detlef van Vuuren of the PBL Netherlands Environmental Assessment Agency and Utrecht University. “Still, most model calculations optimizing the change of the electricity system project energy from biomass to expand threefold, and from wind even sevenfold by 2050.” This would have to be reflected in a potential future EU target on renewable energy.

One remarkable finding is that Europe could do without relying on the much debated and as yet unproven technology of sequestering CO2 from power plant emissions and injecting it into the ground. This is a new result compared to the Roadmap study. Nonetheless, ‘Carbon Capture and Storage’ (CCS) would be needed to achieve an affordable worldwide transformation.

Robust multi-model assessment of EU Roadmap

The new study is the most systematic comparison of computer simulations of the European energy-economy system to date. It includes the PRIMES model, which had attracted criticism in the past for being the only one used by the European Commission for previous assessments of the energy system. “The more comprehensive approach now allows for a more robust assessment of technologies, costs and infrastructure requirements,” John Weyant says, who leads the Stanford Energy Modeling Forum EMF. This is detailed in the Special Issue of Climate Change Economics. “It shows some very promising opportunities to avoid the risks of unabated climate change.”

Article: Knopf, B., Chen, Y-H. H., De Cian, E., Förster, H., Kanudia, A., Karkatsouli, I., Keppo, I., Koljonen, T., Schuhmacher, K., Van Vuuren, D.P. (2013): Beyond 2020 – Strategies and costs for transforming the European energy system. In a Special Issue of Climate Change Economics Vol.04 [doi: 10.1142/S2010007813400010]

Weblink to the article: http://www.worldscientific.com/doi/pdf/10.1142/S2010007813400010

Weblink to the Special Issue: http://www.worldscientific.com/toc/cce/04/supp01

Weblink to more information on EMF: http://emf.stanford.edu/docs/about_emf/

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate
Weitere Informationen:
http://www.worldscientific.com/doi/pdf/10.1142/S2010007813400010
- Weblink to the article
http://www.worldscientific.com/toc/cce/04/supp01
- Weblink to the Special Issue
http://emf.stanford.edu/docs/about_emf/
- Weblink to more information on EMF

Jonas Viering | PIK Pressestelle
Further information:
http://www.pik-potsdam.de

More articles from Ecology, The Environment and Conservation:

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht The European pet trade is jeopardising the survival of rare reptile species
13.07.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Self-assembling nano inks form conductive and transparent grids during imprint

26.07.2016 | Materials Sciences

Lonely Atoms, Happily Reunited

26.07.2016 | Physics and Astronomy

From vision to hand action

26.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>