Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An essay proves that vegetation could recover in the ski resort of Sierra Nevada

15.12.2008
The conditioning Works of Sierra Nevada’s ski runs have destroyed a great amount of vegetable species. The researchers of the University of Granada (Spain) have already managed to grow in the laboratory two native bushy species in order to suggest new mechanisms for vegetable cover restoration. They will try to use them to preserve the biodiversity in the National Park of Sierra Nevada.

The vegetable species of Sierra Nevada are the 30% of Spain’s floral richness and they are impoverishing due to the maintenance with heavy plant of the ski runs. Soil erosion is increasing and the loss of biodiversity gets worse, as 80 of the more than 2,000 vascular plants present are endemic of this massif.

This new experiment, whose results will be published in the next issue of the Central European Journal of Biology, will permit “to recover the spoiled areas, improve the present restoration methodology of the vegetable cover and landscape integration, and favour the preservation of biodiversity in such a fragile area such as Sierra Nevada”, explains to SINC Francisco Serrano Bernardo, main author of the study and Researcher in the field of Environmental Technologies.

The scientists studied two native bushy species of Sierra Nevada, among other taxons: Genista versicolor Boiss (Leguminous) and Reseda complicata Bory (Resedacea), whose ecological niche is, above all, in the ski resort and its environment.

In order to manage the recovery in its natural environment, the researchers wanted to know “some environmental requirements such plants need to optimize their germination and growth processes”. The main problem of bushes is that, in the short term, “they do not manage to regulate themselves to recover their biodiversity naturally”.

Seeds growing in the laboratory
The study has been carried out from three different samples of several soils of the ski resort. The goal is to test if these species seeds are able to grow in different experimental conditions. Soils have not been contingent; they were selected according to the orientation, the slope, the height and the location of the runs in the resort, among other aspects.

Treatments with different vegetable growth regulators (auxins, gibberellins, cytokinins and ethylene) were applied to the seeds “to improve germinative and growth percentages in laboratory and make easier the later transfer and application of the results to the ski resort”, the researcher says.

Seeds germinated and grew successfully in the laboratory. According to Serrano, the effectiveness of the regulators has been tested in aspects such as the formation of the radical system, stem elongation, cotyledon expansion (simple leaves which feed the plant) or leaves appearance.

Once the treatments are applied to the field, they are expected to “favour the recovery of the vegetable cover in a space of time considerably lower to that needed without any intervention”, the experts say.

Carlos Centeno Cuadros | alfa
Further information:
http://prensa.ugr.es/prensa/research/verNota/prensa.php?nota=570

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>