Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epic ocean voyages of coral larvae revealed

21.08.2013
Models provide first-ever simulated glimpse into dispersal and potential effects of climate change

A new computer simulation conducted at the University of Bristol (UB) and University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science has revealed the epic, ocean-spanning journeys travelled by millimetre-sized coral larvae through the world's seas.


The pathways traveled by >14 million modeled coral larval over a one-year period using the Connectivity Modeling System developed by Dr. Claire Paris at the University of Miami. Note the empty no-man's-land that larvae have difficulty breaching -- this is the East Pacific Dispersal Barrier.

Credit: S. Wood/Univ. of Bristol

The study, published in Global Ecology and Biogeography, is the first to recreate the oceanic paths along which corals disperse globally, and will eventually aid predictions of how coral reef distributions may shift with climate change.

Coral reefs are under increasing threat from the combined pressures of human activity, natural disturbances and climate change. It has been suggested that coral may respond to these changing conditions by shifting to more favourable refuges, but their ability to do this will depend on the ocean currents.

Sally Wood, a Ph.D. candidate at UB, explains: "Dispersal is an extremely important process for corals. As they are attached to the seafloor as adults, the only way they can escape harmful conditions or replenish damaged reefs is by releasing their young to the mercy of the ocean currents."

Where these intrepid explorers end up is therefore an important question for coral reef conservation. However, tracking the movement of such tiny larvae in the vast oceans is an impossible task. "This is where computer simulation comes in," adds Wood.

Collaborating across the pond, Wood used the Connectivity Modeling System (CMS) developed by Dr. Claire Paris, associate professor of Applied Marine Physics at UM to identify the billions of paths taken. This larval migration model had been tested in a previous study against the reef-building coral Montastraea annularis in the Caribbean, where consensus between modeled estimates of genetic structure were found.

"Simulating an unprecedented number of mass spawning events from all known shallow reefs in the global ocean proved essential to identifying critical long dispersal distance events that promote the establishment of new coral colonies. What we found using the CMS are rare long distance dispersers that are thought to contribute to species persistence in isolated coral reefs, and to geographic range shifts during environmental changes," said Paris.

Some of the results yielded by the team were surprising. While the majority of simulated larvae settled close to home, others travelled as far as 9,000 km., almost the entire width of the Pacific Ocean. When considered over multiple generations, this means that corals are able to cross entire ocean basins, using islands and coastlines as 'stepping stones.' However, a few places proved too distant for all but the hardiest of larvae: Coral in the tropical eastern Pacific are almost entirely cut off from those on islands of the central Pacific by a daunting 5000 km of open ocean. Geographically isolated reefs such as these may be particularly vulnerable, as they are not stocked with external recruits as frequently.

The model captured the start of the coral larvae's journey to its survival, and further work is ongoing to complete the story. Even after overcoming the trials of the open ocean, coral larvae arriving at a suitable location must first negotiate a 'wall of mouths' to settle on the reef face, and then compete fiercely for the space to thrive and grow.

Development of the CMS was funded through the NSF-RAPID program (OCE-1048697) to CBP.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit http://www.rsmas.miami.edu.

Paper: 'Modeling dispersal and connectivity of broadcast spawning corals at the global scale', by S. Wood, C.B. Paris, A. Ridgwell, & E.J. Hendy. Global Ecology and Biogeography (2013).

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>