Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epic ocean voyages of coral larvae revealed

21.08.2013
Models provide first-ever simulated glimpse into dispersal and potential effects of climate change

A new computer simulation conducted at the University of Bristol (UB) and University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science has revealed the epic, ocean-spanning journeys travelled by millimetre-sized coral larvae through the world's seas.


The pathways traveled by >14 million modeled coral larval over a one-year period using the Connectivity Modeling System developed by Dr. Claire Paris at the University of Miami. Note the empty no-man's-land that larvae have difficulty breaching -- this is the East Pacific Dispersal Barrier.

Credit: S. Wood/Univ. of Bristol

The study, published in Global Ecology and Biogeography, is the first to recreate the oceanic paths along which corals disperse globally, and will eventually aid predictions of how coral reef distributions may shift with climate change.

Coral reefs are under increasing threat from the combined pressures of human activity, natural disturbances and climate change. It has been suggested that coral may respond to these changing conditions by shifting to more favourable refuges, but their ability to do this will depend on the ocean currents.

Sally Wood, a Ph.D. candidate at UB, explains: "Dispersal is an extremely important process for corals. As they are attached to the seafloor as adults, the only way they can escape harmful conditions or replenish damaged reefs is by releasing their young to the mercy of the ocean currents."

Where these intrepid explorers end up is therefore an important question for coral reef conservation. However, tracking the movement of such tiny larvae in the vast oceans is an impossible task. "This is where computer simulation comes in," adds Wood.

Collaborating across the pond, Wood used the Connectivity Modeling System (CMS) developed by Dr. Claire Paris, associate professor of Applied Marine Physics at UM to identify the billions of paths taken. This larval migration model had been tested in a previous study against the reef-building coral Montastraea annularis in the Caribbean, where consensus between modeled estimates of genetic structure were found.

"Simulating an unprecedented number of mass spawning events from all known shallow reefs in the global ocean proved essential to identifying critical long dispersal distance events that promote the establishment of new coral colonies. What we found using the CMS are rare long distance dispersers that are thought to contribute to species persistence in isolated coral reefs, and to geographic range shifts during environmental changes," said Paris.

Some of the results yielded by the team were surprising. While the majority of simulated larvae settled close to home, others travelled as far as 9,000 km., almost the entire width of the Pacific Ocean. When considered over multiple generations, this means that corals are able to cross entire ocean basins, using islands and coastlines as 'stepping stones.' However, a few places proved too distant for all but the hardiest of larvae: Coral in the tropical eastern Pacific are almost entirely cut off from those on islands of the central Pacific by a daunting 5000 km of open ocean. Geographically isolated reefs such as these may be particularly vulnerable, as they are not stocked with external recruits as frequently.

The model captured the start of the coral larvae's journey to its survival, and further work is ongoing to complete the story. Even after overcoming the trials of the open ocean, coral larvae arriving at a suitable location must first negotiate a 'wall of mouths' to settle on the reef face, and then compete fiercely for the space to thrive and grow.

Development of the CMS was funded through the NSF-RAPID program (OCE-1048697) to CBP.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit http://www.rsmas.miami.edu.

Paper: 'Modeling dispersal and connectivity of broadcast spawning corals at the global scale', by S. Wood, C.B. Paris, A. Ridgwell, & E.J. Hendy. Global Ecology and Biogeography (2013).

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>