Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmentally 'green' beer: Munich brewing engineers research energy savings

09.09.2009
Innovation on exhibit at pre-Oktoberfest 'drinktec 2009' trade fair

A cool, freshly drawn beer – for many a person this is the greatest of pleasures. But, in fact, a bad conscience should haunt us when we drink beer as it is among the most energy-intensive foodstuffs during production. Brewing engineers from the Technische Universitaet Muenchen (TUM) are working hard to improve the energy balance of the amber beverage.

They are looking into a new process combination that would allow energy savings of up to 20% during brewing. The Weihenstephan scientists will be exhibiting the heart of their energy-saving idea at the drinktec trade fair in Munich (14 – 19 September).

For over one hundred years one fundamental technical precept has applied to all breweries: You can't brew beer without a kettle. Only a mighty boil kettle is capable of generating the temperatures of 110 to 160 degrees centigrade required to boil down "crude beer," the so-called wort. This process consumes substantial amounts of energy: Almost half of the overall energy consumption of a classical brewery – 45 percent, to be exact – goes into wort processing. That is why engineers have been working on solutions to reduce heat and electricity consumption in brewing for years now.

One approach was to use combined heat and power (CHP) stations, which are highly energy efficient and environmentally friendly due their cogeneration of power and heat. This technology, however, has proven to be unsuitable for breweries: CHP stations do indeed generate heat in addition to power, but only achieve temperatures up 90 degrees centigrade. Boiling down wort requires at least 110 degrees centigrade. To remedy this deficit, engineers from the Institute for Resource and Energy Technology at the TU Muenchen have been following a hot trail since August 2008: They have combined the CHP station with a so-called "zeolite storage system."

Such storage systems work thermo-chemically with zeolite spheres 2-3 mm in diameter. These porous pellets are made of silicate minerals and have excellent heat storage properties. One gram of zeolite has an internal surface of about 500 square meters. The pores absorb water to full saturation. When zeolite is heated, the spheres dry up – the storage system is charged. Once water is added again, the zeolite spheres release heat of up to 250 degrees centigrade. The brewing engineers at the TUM want to take advantage of this thermo-chemical principle to add on the missing 20 degrees to the 90 degrees centigrade from the CHP station of the brewery.

To this end, they intend to use an empty time slot in the production process. "At night a medium-sized brewery needs little energy," says project leader Dr. Winfried Russ. "In this time we can feed unused heat from the CHP station into the zeolite storage system." During the day, when high temperatures are required to boil the wort, additional heat can be fed into the overall system almost instantaneously with the "heat boosting" press of a button. This places resource-efficient, low-energy beer within drinkable reach.

The newly combined production chain works perfectly already in computer simulations, and practical tests are just getting under way. Researchers from the TU Muenchen, in collaboration with colleagues from the RWTH Aachen, have now, for the first time, set up a test station at Weihenstephan that uses the new equipment combination to simulate brewery processes. Winfried Russ is eager to see the results: "We already know that it will work. What we don't know is just how much energy can be saved." The researchers are counting on at least ten percent.

In a second step, the TUM engineers intend to model the energy balance of an entire brewery. The cleaning system, the brewing facilities, the fermenting room and storage cellar, as well as the bottling facilities will all be heated at only 90 degrees centigrade instead of using steam of up to 160 degrees. The researchers are counting on this, taken together with the additional waste heat utilization, to result in energy savings of altogether 20 percent. "This is more than the total savings from all energy efficiency measures taken in the brewing industry during the last ten years," according to Russ. The experiment will have run its course by mid-2011. Both small and medium-sized breweries are eagerly awaiting the results: Potential takers are already showing interest in the pilot project that will follow.

It is reasonable to expect that in a few years we will be drinking real "energy-efficient beer" – and enjoying it with a green conscience. The underlying technology will be on display at the drinktec 2009 trade fair from 14 to 19 September, where the Weihenstephan researchers from the TU Muenchen will exhibit a model of the zeolite storage system. Please do visit us in hall A4 at the New Munich Trade Fair Centre in Riem, Booth 335, every day between 9 a.m. and 6 p.m.

Contact:
Outside lecturer Dr. Winfried Russ
Chair of Energy and Resource Technology, Department of Thermal Processes
Technische Universitaet Muenchen
85350 Freising-Weihenstephan
Phone: 08161 / 71 – 38 65
Email: winfried.russ@wzw.tum.de
Picture material:
http://mediatum2.ub.tum.de/node?id=808948
Background:
The research project "Development of a process combination for energy efficient heat supply of a brewery" is being subsidized with EUR 400,000 by the DBU - Deutsche Bundesstiftung Umwelt and is being implemented in close collaboration with the Brauereimaschinenfabrik und Apparatebauanstalt Kaspar Schulz, Bamberg. The project, conducted by the Institute for Resource and Energy Technology at the TU Muenchen together with colleagues from the Chair of Technical Thermodynamics at the RWTH Aachen, will run until August 2011.

Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 420 professors, 6,500 academic and non-academic staff (including those at the university hospital "Rechts der Isar"), and 23,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university.

Patrick Regan | EurekAlert!
Further information:
http://www.tum.de

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>