Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental Manganese Good in Trace Amounts but Can Correlate to Cancer Rates

14.07.2009
In the first ecological study of its kind in the world, a Wake Forest University Baptist Medical Center researcher has uncovered the unique finding that groundwater and airborne manganese in North Carolina correlates with cancer mortality at the county level.

The study, titled, “Environmental Manganese and Cancer Mortality Rates by County in North Carolina: An Ecological Study,” was published online last month by Biological Trace Element Research.

Lead researcher John Spangler, M.D., professor of family and community medicine at Wake Forest Baptist, found that groundwater manganese appears to be positively associated with total cancer, colon cancer and lung cancer death rates, while airborne manganese concentrations appear to be inversely associated with total cancer, breast cancer and lung cancer death rates.

“People need manganese in trace amounts, but if you get too much of it, manganese can be dangerous,” Spangler said. “It’s my hope that the impact of this study will be to spark additional interest and research. This really just raises the concern that something may be going on and argues for further research into these issues.”

To determine whether environmental manganese is related to cancer at the county level in North Carolina, Spangler conducted an ecological study using data from the North Carolina State Center for Health Statistics, North Carolina Geological Survey, U.S. Geological Survey, and U.S. Census.

He found that airborne manganese was associated at the county level with an 14 percent decrease in total cancer deaths, a 43 percent decrease in breast cancer deaths and a 22 percent decrease in lung cancer deaths. Additionally, Spangler found there was up to a 28 percent increase in county-level colon cancer deaths and a 26 percent increase in lung cancer deaths at the county level related to elevation of manganese in groundwater as opposed to air.

“That’s pretty astounding. These are the first data we know of to document a potential relationship between environmental manganese and population-level cancer death rates,” Spangler said. “The positive association between groundwater manganese and specific cancer mortality rates might be a function of the high concentrations measures, while the inverse relationship between air manganese and death rates might point toward adequate (e.g. healthy) county-level manganese exposures.”

Spangler points out that because manganese now replaces lead in gasoline globally, the amount of manganese in the environment is increasing and may worsen the groundwater concentration numbers in the future. The effects of these ecological findings should be confirmed at the individual level or in animal models, he said.

Bonnie Davis | Newswise Science News
Further information:
http://www.wfubmc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>