Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental DNA uncovers biodiversity in rivers

30.08.2016

Researchers from UZH and Eawag have used “environmental DNA” to determine the biodiversity of a river. Previously, this involved collecting and identifying all the organisms living in it. Using environmental DNA, however, not only is it possible to characterize the river’s biodiversity, but also that of the surrounding landscape.

Most natural ecosystems are heavily affected by changes to the human habitat, climate change or invasive species. In order to protect these ecosystems, one needs to know which organisms live in them. Therefore, assessing the state of and change in biodiversity is central to ecology and conservation biology. However, classical methods are often only suitable for determining a subset of organisms. Moreover, they are expensive and involve collecting the organisms themselves.


Sampling of 1 liter of river water, in order to subsequently extract DNA from the organisms living in the river.

Picture: UZH


Aquatic invertebrates are making up the largest part of diversity in riverine systems.

Picture: UZH

Recently, scientists came up with the idea of collecting the DNA of organisms from environmental samples instead, such as soil or water, and determining the various species that way. All organisms constantly shed DNA into the environment, such as via feces or skin particles.

This environmental DNA is sequenced using state-of-the-art technology and subsequently matched with databases to determine the species. “This completely novel approach has the potential to revolutionize the study of biodiversity,” says Florian Altermatt, a professor at the Department of Evolutionary Biology and Environmental Studies at the University of Zurich and the Swiss Federal Institute of Aquatic Science and Technology (Eawag).

DNA from mayflies and beavers

Altermatt and his team at Eawag in Dübendorf recently provided practical evidence of this idea by collecting water at various points in the Glatt, a river in the Canton of Zurich, and subsequently extracting all the DNA. “We collected a liter of water, which meant we could extract DNA from a staggering number of species, from aquatic insects, such as mayflies, to the beaver who lives further upstream,” explains study coordinator Altermatt. DNA from thousands of organisms was compared with traditional estimates of biodiversity. This confirmed that the organisms detected actually live in this environment.

In previous studies, the authors had already demonstrated that rivers transport DNA for several kilometers. “This opens up completely novel approaches to collect information on the diversity of organisms in river systems,” says Altermatt. “We can now potentially determine biodiversity in a similar way to the chemistry of the water.” Not only do the individual water samples contain information on aquatic organisms, but also land organisms found along the river. Consequently, the scientists gained a fingerprint of the organisms living in entire catchment areas and demonstrate the potential of environmental DNA for determining the biodiversity of all animals, from aquatic insects to mammals.

Routinely determining biodiversity

The study conducted by the UZH researchers reveals that, through their unique network structure, rivers collect and transport DNA containing information on the organisms in the water and on land. As the method can be automated, it might be possible to obtain data on biodiversity in an unprecedented spatial and temporal resolution in the future. “I could imagine that the water samples currently taken by cantonal or federal authorities on a daily or even hourly basis for chemical screening could also be used to record biodiversity,” speculates Altermatt.


Literature:

Kristy Deiner, Emanuel A. Fronhofer, Elvira Mächler, Jean-Claude Walser and Florian Altermatt. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nature Communications. August 30, 2016. Doi: 10.1038/ncomms12544


Contact:

Prof. Florian Altermatt

Department of Evolutionary Biology and Environmental Studies

University of Zurich

Phone: +41 58 765 55 92 / +41 79 222 98 10

E-mail: florian.altermatt@ieu.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2016/Enviromental-DNA.html

Nathalie Huber | Universität Zürich

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

A new approach to high insulin levels

18.09.2017 | Health and Medicine

Sensing with a twist: A new kind of optical nanosensor uses torque for signal processing

18.09.2017 | Physics and Astronomy

World first: 'Storing lightning inside thunder'

18.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>