Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enigmatic sea urchin structure catalogued

10.06.2009
A comprehensive investigation into the axial complex of sea urchins (Echinoidea), an internal structure with unknown function, has shown that within that group of marine invertebrates there exists a structural evolutionary interdependence of various internal organs.

The research, published in BioMed Central's open access journal Frontiers in Zoology, demonstrates that the approach of combining all structural data available on a given organ in combination with a broad taxonomic coverage can yield novel insights into the evolution of internal organ systems.

Alexander Ziegler, from Charité-Universitätsmedizin Berlin, led a team of researchers who used a high-resolution non-invasive imaging technique (magnetic resonance imaging) to compare the structure of the axial complex of specimens from almost all sea urchin orders. These data were extended with invasive techniques such as dissection, histology and transmission electron microscopy.

Based on the available data, a re-evaluation of published studies spanning almost two centuries became possible. In their combined review/original article type manuscript, Ziegler and co-workers point out, "This kind of study is very powerful in elucidating interdependent anatomical relationships that are not obvious when the analysis is carried out only with a few species".

As well as presenting their exhaustive analysis of the architecture of the echinoid axial complex, Ziegler and his colleagues suggest a list of definitions and provide a multilingual compilation for echinoid axial complex components. According to the researchers, "This should limit the confusion caused by the bewildering range of terminology applied by different authors and in different languages to the same anatomical entities".

1. Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea)
Alexander Ziegler, Cornelius Faber and Thomas Bartolomaeus
Frontiers in Zoology (in press)
2. A striking picture of one of the sea urchins studied is available here:
http://www.biomedcentral.com/graphics/email/images/purpleurchin.jpg
Species: Strongylocentrotus purpuratus. Please credit 'Ziegler et al., Frontiers in Zoology'.

3. Frontiers in Zoology is an Open Access, peer-reviewed, online journal publishing high quality research articles and reviews on all aspects of animal life. It is the first Open Access journal focussing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.

4. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>