Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An enigmatic problem in marine ecology uncovered

10.05.2011
Reef fishes and many other marine species live all their adulthood in one place but early in their lives, when they're eggs and larvae, spend a short period of time drifting and swimming in the open ocean.

It seems intuitive that the duration of this open water period should determine the geographic extent over which species are found as species that spend longer drifting at sea are likely to reach greater distances. Interestingly enough, numerous studies have consistently failed to find any relationship between the duration of the open water period and the geographic coverage of marine species. A new research paper has uncovered this mystery.

"One of the most puzzling results in the study of reef fishes and other marine organisms that dwell sea-floor habitats as adults but drift in open water early in their lives is why their geographic coverage bears no relationship with the duration of the open water period," explains co-author Dr. Camilo Mora, post-doctoral fellow in the Department of Biological Science at Dalhousie University. "Since this idea was first proposed over 30 years ago, we've been scratching our heads trying to resolve this mystery by evaluating the relationship multiple times in different groups of species and regions. Yet we consistently we failed to find a noteworthy relationship."

In this new study, the team of researchers, which included marine ecologists, geneticists and ocean current modelers, first evaluated the possibility that the relationship between geographic extent and the duration of the open water period was compounded by the evolutionary age of species, whose effect has not been considered in previous studies. The rationale was that the age of a species should add to the geographic coverage of species as older species have had more time to expand geographically compared to younger species.

To evaluate this idea, the authors compiled the largest set of data yet assembled on evolutionary ages of reef fish species, and the duration of their open water periods and geographic extents. The analysis of this data showed, however, that even after taking evolutionary age into account there was still no relationship between geographic extent and the duration of the open water period.

"We expected that the effect of species ages could be the missing piece to resolve this puzzle," says co-author Dr. Denis Roy, post-doctoral associate in the Department of Biology/Marine Gene Probe Laboratory at Dalhousie University. "So we were a bit disappointed to find that neither the age of the species nor the duration of the open water period or both combined played an important role on the geographic extent of reef fishes."

"This result, about the limited effect of species ages, deepened our intrigue," says co-author Kate Crosby from Dalhousie University. "The only other thing we could think of was that perhaps reef habitats were so highly connected by ocean currents that species could reach all suitable habitats regardless of their open water period or time since they originated as new species."

To test this idea, the team took on the challenge of modeling the paths of fish larvae during the open water period over the world's tropical reefs. The authors used state of the art models of ocean currents and compiled a worldwide set of data on marine habitats where reef fish dwell. Simulated larvae were released from all possible habitats and allowed to drift for times equal to the duration of their open water periods. The simulation required 600 computer processors running continuously for six months. The results revealed that the majority of reef habitats worldwide are so interconnected that species can quickly spread their geographic distribution pushed by ocean currents. This lack of constraints to the geographic expansion of species provides one of the first explanations for why geographic extent bears no relationship with the duration of the open water period.

"An underlying assumption of the expected relationship between geographic extent and the duration of the open water period is that reef habitats are positioned in a gradient of isolation, which species can bridge only depending on how long the spend drifting in the open ocean," says co-author Dr. Eric Treml, post-doctoral fellow in the School of Biological Sciences at University of Queensland, Australia. "Our simulations of what happens during the open water period suggest that that assumption is just not valid. Given ocean currents, fish larvae can go almost anywhere."

"This is like having a 100 metre race between a car and a bike and giving them one hour to finish; the task is so easy that both vehicles will reach the finish line independent of their speeds," says co-author Jason Roberts at Duke University, U.S.A. "As for reef fishes, ocean currents provide such fast freeways that species can easily reach suitable reefs independent of the time they spend drifting in the open water."

"We've been able to provide new insight into why an intuitively important factor played no role in shaping the geographic extent of reef fish species," says co-author Derek Tittensor at Microsoft Research in Cambridge, U.K. "Given our results, however, a question that still needs to be answered is why all reef fish species are not found everywhere."

Dr. Camilo Mora | EurekAlert!
Further information:
http://www.dal.ca

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>