Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Without Borders Works with Kenyan Village to Improve Water Supply

05.09.2008
Members of the Engineers Without Borders (EWB) student chapter at the University of Massachusetts Amherst recently returned from a three-week trip to Kenya, where they worked to improve drinking water for a rural farming village.

It was the third visit of the group as part of its long-term Kenya Water Program, which is aimed at providing a self-sufficient water supply for several thousand people in the rural farming village of the Namawanga area in western Kenya.

Namawanga, a community that raises sugarcane, sweet potatoes and corn, relies on water sometimes located more than two miles away. Villagers must fetch their water on foot from sources often contaminated with animal and human waste or running dry during part of the year. Each household spends up to five hours per day gathering water.

The EWB project will impact Namawanga by creating reliable water sources that serve more than 3,000 people in the surrounding countryside and reduce their chances of contracting waterborne diseases such as dysentery, typhoid and cholera. The improved water sources will also allow the residents more time to raise food, participate in income-generating activities and attend school. The goal is to give Namawanga a water supply that is uncontaminated and sustainable by local technicians.

“The first thing we did on this trip was assess all the springboxes,” says EWB Kenya Program team leader Christina Stauber, a graduate student in environmental engineering.

A springbox is a structure made of a concrete retaining wall with steel piping that collects and stores water from a natural spring. Ideally, each springbox should function to protect the spring water from contamination by human and animal waste and provide a point of collection. But most of the springboxes in Namawanga are not doing their job effectively and the EWB has been improving them, chiefly by building fencing around the boxes to keep out animals.

“There were about 15 springboxes and natural springs that we had to visit and assess,” said Stauber. “Then, once we discussed the issues with the village, we got to work. We built fences around four springboxes this year. We fenced in four springboxes during our last trip to Kenya, and the villagers did another two. This trip we also built a new springbox from scratch on a natural spring that doesn’t dry out. That means constructing the concrete water storage area to hold and discharge water from the spring.”

The EWB team also did water quality and flow measurements of water sources and checked the status of previously installed fencing. One fence had obviously been invaded by a cow and some posts had rotted in the 18 months since they were emplaced, so EWB worked with villagers to install steel fence posts set in concrete to keep out grazing animals.

The UMass Amherst EWB chapter has been raising the $20,000 required to drill a permanent deep borehole on the grounds of a technical school in Namawanga, where the surrounding community will have a clean, year-round water source. By contrast, it takes only about $100 to build a new springbox, but the water availability is less reliable than a well and the water more likely to be contaminated.

“EWB is giving me a good glimpse of what my future could be like,” said Stauber. “I’ve had the idea in mind all along that I could be an engineer doing international development, but this trip made that idea much more concrete. In Kenya, I got a good sense about what the need actually is in developing countries and what I personally can do about it. It was a huge learning experience.”

Accompanying Stauber were graduate student Amanda Keyes, undergraduates Patrick Border and Patrick Westropp, recent graduates Thomas Chase and Christopher Arsenault, John Tobiason, professor of civil and environmental engineering, and professional mentor David Bakuli. Bakuli earned his doctorate in industrial engineering from UMass Amherst in 1993 and now teaches at Westfield State College. He is also from western Kenya, so he knows the culture and speaks Swahili and the local language.

The UMass Amherst EWB chapter includes engineering and non-engineering students whose mission is to help disadvantaged communities improve their quality of life by developing environmentally friendly and economically sustainable projects.

“For me it’s the kind of project I’ve wanted to get involved with for years,” said Tobiason. “I know I have a lot of knowledge that’s transferrable to the field. I’m very practical. My father was a carpenter who could build things. I inherited that sort of hands-on skill. To go to a place where I can just jump in and put my knowledge to work, showing people how simple it is to improve their water resources, that’s all very satisfying. It’s fulfilling to a different part of me than the guy who’s been teaching and conducting technical research for 20 years.”

Tobiason and Stauber also lectured to some 1,100 secondary and primary school students on water treatment and sanitation issues and encouraged students at a local university to get involved in the work at Namawanga.

Christina Stauber | Newswise Science News
Further information:
http://www.umass.edu/newsoffice

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>