Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Without Borders Works with Kenyan Village to Improve Water Supply

05.09.2008
Members of the Engineers Without Borders (EWB) student chapter at the University of Massachusetts Amherst recently returned from a three-week trip to Kenya, where they worked to improve drinking water for a rural farming village.

It was the third visit of the group as part of its long-term Kenya Water Program, which is aimed at providing a self-sufficient water supply for several thousand people in the rural farming village of the Namawanga area in western Kenya.

Namawanga, a community that raises sugarcane, sweet potatoes and corn, relies on water sometimes located more than two miles away. Villagers must fetch their water on foot from sources often contaminated with animal and human waste or running dry during part of the year. Each household spends up to five hours per day gathering water.

The EWB project will impact Namawanga by creating reliable water sources that serve more than 3,000 people in the surrounding countryside and reduce their chances of contracting waterborne diseases such as dysentery, typhoid and cholera. The improved water sources will also allow the residents more time to raise food, participate in income-generating activities and attend school. The goal is to give Namawanga a water supply that is uncontaminated and sustainable by local technicians.

“The first thing we did on this trip was assess all the springboxes,” says EWB Kenya Program team leader Christina Stauber, a graduate student in environmental engineering.

A springbox is a structure made of a concrete retaining wall with steel piping that collects and stores water from a natural spring. Ideally, each springbox should function to protect the spring water from contamination by human and animal waste and provide a point of collection. But most of the springboxes in Namawanga are not doing their job effectively and the EWB has been improving them, chiefly by building fencing around the boxes to keep out animals.

“There were about 15 springboxes and natural springs that we had to visit and assess,” said Stauber. “Then, once we discussed the issues with the village, we got to work. We built fences around four springboxes this year. We fenced in four springboxes during our last trip to Kenya, and the villagers did another two. This trip we also built a new springbox from scratch on a natural spring that doesn’t dry out. That means constructing the concrete water storage area to hold and discharge water from the spring.”

The EWB team also did water quality and flow measurements of water sources and checked the status of previously installed fencing. One fence had obviously been invaded by a cow and some posts had rotted in the 18 months since they were emplaced, so EWB worked with villagers to install steel fence posts set in concrete to keep out grazing animals.

The UMass Amherst EWB chapter has been raising the $20,000 required to drill a permanent deep borehole on the grounds of a technical school in Namawanga, where the surrounding community will have a clean, year-round water source. By contrast, it takes only about $100 to build a new springbox, but the water availability is less reliable than a well and the water more likely to be contaminated.

“EWB is giving me a good glimpse of what my future could be like,” said Stauber. “I’ve had the idea in mind all along that I could be an engineer doing international development, but this trip made that idea much more concrete. In Kenya, I got a good sense about what the need actually is in developing countries and what I personally can do about it. It was a huge learning experience.”

Accompanying Stauber were graduate student Amanda Keyes, undergraduates Patrick Border and Patrick Westropp, recent graduates Thomas Chase and Christopher Arsenault, John Tobiason, professor of civil and environmental engineering, and professional mentor David Bakuli. Bakuli earned his doctorate in industrial engineering from UMass Amherst in 1993 and now teaches at Westfield State College. He is also from western Kenya, so he knows the culture and speaks Swahili and the local language.

The UMass Amherst EWB chapter includes engineering and non-engineering students whose mission is to help disadvantaged communities improve their quality of life by developing environmentally friendly and economically sustainable projects.

“For me it’s the kind of project I’ve wanted to get involved with for years,” said Tobiason. “I know I have a lot of knowledge that’s transferrable to the field. I’m very practical. My father was a carpenter who could build things. I inherited that sort of hands-on skill. To go to a place where I can just jump in and put my knowledge to work, showing people how simple it is to improve their water resources, that’s all very satisfying. It’s fulfilling to a different part of me than the guy who’s been teaching and conducting technical research for 20 years.”

Tobiason and Stauber also lectured to some 1,100 secondary and primary school students on water treatment and sanitation issues and encouraged students at a local university to get involved in the work at Namawanga.

Christina Stauber | Newswise Science News
Further information:
http://www.umass.edu/newsoffice

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>