Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy from biomass pays even with forest protection in the long term

18.08.2011
Forest protection – safeguarding woodland from being cleared and converted to fields for energy crops – reduces the global economic potential of bioenergy only in the short term.

If less additional land is available for cultivation, this can be compensated by higher rates of yield-raising investments. This is shown by a new study. However, following this scenario global food production prices could rise considerably.

Generating energy from crops instead of oil and coal can have counterproductive effects. “The use of biomass can lead to additional emissions of greenhouse gases”, says lead author Alexander Popp of the Potsdam Institute for Climate Impact Research (PIK). “This is the case if forests get cut down to plant energy crops instead.” Forests are important CO2 sinks. At the same time, biomass is expected to play an important role in future energy systems.

Therefore, a team of nine researchers investigated the potential of bioenergy constrained by forest protection. “We did not just calculate the biophysical potential”, Popp points out. “We established which amount of bioenergy, competing with other forms of energy, in the end is really cost-effective.” The scientists simulated this with complex computer-based models. The results now have been published in the journal Environmental Research Letters.

For the first time, a global land-use model was coupled with a model of the energy system and a vegetation model in a way that allows dynamic and detailed simulation of the tradeoffs between different factors. Amongst the factors taken into account are technological change, cropland expansion, and the change of dietary patterns in societies with growing wealth.

The outcome is that biomass in 2095 can contribute up to 270 exajoules to the worldwide energy supply – mainly in combination with Carbon Capture and Storage (CCS). This is just ten percent less than the potential without forest protection. Thus, about one fifth of the estimated global energy demand by the end of the century could be satisfied. In the year 2055 things look different. At this point in time, forest protection still shows the effect of considerably reducing the economic potential of bioenergy: from 100 to 70 exajoules, or 30 percent less. However, with respect to the importance of CCS for the contribution of bioenergy to climate change mitigation one needs to consider that the availability of this technology is still uncertain.

When forests get excluded from conversion to cropland for energy plants this increases competition for arable land between bioenergy and food production. This is the case even if – as done in the study presented – instead of edible crops such as corn and sugar cane, rather species like poplar and Miscanthus grass are planned for energy production. This leads to an increase of food production costs. “If one wants to achieve high potentials of bioenergy under the constraint of forest protection, much more investment has to be made in increasing agricultural productivity”, Popp says. “Also, we need to find new ways of really transfering technological change for instance to peasants in developing countries.”

If the goal is to prevent dangerous climate change, this can hardly be reached without expanding the use of energy from biomass, says Ottmar Edenhofer, co-author of the study and chief economist of PIK. “Without biomass plus carbon capture and storage – the sequestration of CO2 when those plants are used to fire power stations – climate protection might get quite expensive, as many studies show.” On the other hand, it becomes clear how inappropriate some one-sided praise of bioenergy is. “This kind of energy also comes at a price”, Edenhofer says. “Policies therefore shouldn’t just aim at the bioenergy but also integrate issues of land-use change and global food security.”

Article: Popp, A., Dietrich, J.P., Lotze-Campen H., Klein, D., Bauer, N., Krause, M., Beringer, T., Gerten, D., Edenhofer, O. (2011): The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environmental Research Letters [doi:10.1088/1748-9326/6/3/034017]

For further information please contact the PIK press office:

Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de
Related studies from PIK:
Popp A., Lotze-Campen, H., Leimbach M., Knopf B., Beringer, T., Bauer N., Bodirsky B. (2011): On sustainability of bio-energy production: integrating co-emissions from agricultural intensification. Biomass & Bioenergy [doi:10.1016/j.biombioe.2010.06.014]

Beringer, T., Lucht, W., Schaphoff, S. (2011): Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy [doi:10.1111/j.1757-1707.2010.01088.x]

Lotze-Campen, H., Popp, A., Beringer, T., Müller, C., Bondeau, A., Rost, S., Lucht, W. (2010): Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling 221: 2188-2196 [doi:10.1016/j.ecolmodel.2009.10.002]

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de
http://iopscience.iop.org/1748-9326/6/3/034017/fulltext

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>