Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy from biomass pays even with forest protection in the long term

18.08.2011
Forest protection – safeguarding woodland from being cleared and converted to fields for energy crops – reduces the global economic potential of bioenergy only in the short term.

If less additional land is available for cultivation, this can be compensated by higher rates of yield-raising investments. This is shown by a new study. However, following this scenario global food production prices could rise considerably.

Generating energy from crops instead of oil and coal can have counterproductive effects. “The use of biomass can lead to additional emissions of greenhouse gases”, says lead author Alexander Popp of the Potsdam Institute for Climate Impact Research (PIK). “This is the case if forests get cut down to plant energy crops instead.” Forests are important CO2 sinks. At the same time, biomass is expected to play an important role in future energy systems.

Therefore, a team of nine researchers investigated the potential of bioenergy constrained by forest protection. “We did not just calculate the biophysical potential”, Popp points out. “We established which amount of bioenergy, competing with other forms of energy, in the end is really cost-effective.” The scientists simulated this with complex computer-based models. The results now have been published in the journal Environmental Research Letters.

For the first time, a global land-use model was coupled with a model of the energy system and a vegetation model in a way that allows dynamic and detailed simulation of the tradeoffs between different factors. Amongst the factors taken into account are technological change, cropland expansion, and the change of dietary patterns in societies with growing wealth.

The outcome is that biomass in 2095 can contribute up to 270 exajoules to the worldwide energy supply – mainly in combination with Carbon Capture and Storage (CCS). This is just ten percent less than the potential without forest protection. Thus, about one fifth of the estimated global energy demand by the end of the century could be satisfied. In the year 2055 things look different. At this point in time, forest protection still shows the effect of considerably reducing the economic potential of bioenergy: from 100 to 70 exajoules, or 30 percent less. However, with respect to the importance of CCS for the contribution of bioenergy to climate change mitigation one needs to consider that the availability of this technology is still uncertain.

When forests get excluded from conversion to cropland for energy plants this increases competition for arable land between bioenergy and food production. This is the case even if – as done in the study presented – instead of edible crops such as corn and sugar cane, rather species like poplar and Miscanthus grass are planned for energy production. This leads to an increase of food production costs. “If one wants to achieve high potentials of bioenergy under the constraint of forest protection, much more investment has to be made in increasing agricultural productivity”, Popp says. “Also, we need to find new ways of really transfering technological change for instance to peasants in developing countries.”

If the goal is to prevent dangerous climate change, this can hardly be reached without expanding the use of energy from biomass, says Ottmar Edenhofer, co-author of the study and chief economist of PIK. “Without biomass plus carbon capture and storage – the sequestration of CO2 when those plants are used to fire power stations – climate protection might get quite expensive, as many studies show.” On the other hand, it becomes clear how inappropriate some one-sided praise of bioenergy is. “This kind of energy also comes at a price”, Edenhofer says. “Policies therefore shouldn’t just aim at the bioenergy but also integrate issues of land-use change and global food security.”

Article: Popp, A., Dietrich, J.P., Lotze-Campen H., Klein, D., Bauer, N., Krause, M., Beringer, T., Gerten, D., Edenhofer, O. (2011): The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environmental Research Letters [doi:10.1088/1748-9326/6/3/034017]

For further information please contact the PIK press office:

Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de
Related studies from PIK:
Popp A., Lotze-Campen, H., Leimbach M., Knopf B., Beringer, T., Bauer N., Bodirsky B. (2011): On sustainability of bio-energy production: integrating co-emissions from agricultural intensification. Biomass & Bioenergy [doi:10.1016/j.biombioe.2010.06.014]

Beringer, T., Lucht, W., Schaphoff, S. (2011): Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy [doi:10.1111/j.1757-1707.2010.01088.x]

Lotze-Campen, H., Popp, A., Beringer, T., Müller, C., Bondeau, A., Rost, S., Lucht, W. (2010): Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling 221: 2188-2196 [doi:10.1016/j.ecolmodel.2009.10.002]

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de
http://iopscience.iop.org/1748-9326/6/3/034017/fulltext

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>