Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy from biomass pays even with forest protection in the long term

18.08.2011
Forest protection – safeguarding woodland from being cleared and converted to fields for energy crops – reduces the global economic potential of bioenergy only in the short term.

If less additional land is available for cultivation, this can be compensated by higher rates of yield-raising investments. This is shown by a new study. However, following this scenario global food production prices could rise considerably.

Generating energy from crops instead of oil and coal can have counterproductive effects. “The use of biomass can lead to additional emissions of greenhouse gases”, says lead author Alexander Popp of the Potsdam Institute for Climate Impact Research (PIK). “This is the case if forests get cut down to plant energy crops instead.” Forests are important CO2 sinks. At the same time, biomass is expected to play an important role in future energy systems.

Therefore, a team of nine researchers investigated the potential of bioenergy constrained by forest protection. “We did not just calculate the biophysical potential”, Popp points out. “We established which amount of bioenergy, competing with other forms of energy, in the end is really cost-effective.” The scientists simulated this with complex computer-based models. The results now have been published in the journal Environmental Research Letters.

For the first time, a global land-use model was coupled with a model of the energy system and a vegetation model in a way that allows dynamic and detailed simulation of the tradeoffs between different factors. Amongst the factors taken into account are technological change, cropland expansion, and the change of dietary patterns in societies with growing wealth.

The outcome is that biomass in 2095 can contribute up to 270 exajoules to the worldwide energy supply – mainly in combination with Carbon Capture and Storage (CCS). This is just ten percent less than the potential without forest protection. Thus, about one fifth of the estimated global energy demand by the end of the century could be satisfied. In the year 2055 things look different. At this point in time, forest protection still shows the effect of considerably reducing the economic potential of bioenergy: from 100 to 70 exajoules, or 30 percent less. However, with respect to the importance of CCS for the contribution of bioenergy to climate change mitigation one needs to consider that the availability of this technology is still uncertain.

When forests get excluded from conversion to cropland for energy plants this increases competition for arable land between bioenergy and food production. This is the case even if – as done in the study presented – instead of edible crops such as corn and sugar cane, rather species like poplar and Miscanthus grass are planned for energy production. This leads to an increase of food production costs. “If one wants to achieve high potentials of bioenergy under the constraint of forest protection, much more investment has to be made in increasing agricultural productivity”, Popp says. “Also, we need to find new ways of really transfering technological change for instance to peasants in developing countries.”

If the goal is to prevent dangerous climate change, this can hardly be reached without expanding the use of energy from biomass, says Ottmar Edenhofer, co-author of the study and chief economist of PIK. “Without biomass plus carbon capture and storage – the sequestration of CO2 when those plants are used to fire power stations – climate protection might get quite expensive, as many studies show.” On the other hand, it becomes clear how inappropriate some one-sided praise of bioenergy is. “This kind of energy also comes at a price”, Edenhofer says. “Policies therefore shouldn’t just aim at the bioenergy but also integrate issues of land-use change and global food security.”

Article: Popp, A., Dietrich, J.P., Lotze-Campen H., Klein, D., Bauer, N., Krause, M., Beringer, T., Gerten, D., Edenhofer, O. (2011): The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environmental Research Letters [doi:10.1088/1748-9326/6/3/034017]

For further information please contact the PIK press office:

Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de
Related studies from PIK:
Popp A., Lotze-Campen, H., Leimbach M., Knopf B., Beringer, T., Bauer N., Bodirsky B. (2011): On sustainability of bio-energy production: integrating co-emissions from agricultural intensification. Biomass & Bioenergy [doi:10.1016/j.biombioe.2010.06.014]

Beringer, T., Lucht, W., Schaphoff, S. (2011): Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy [doi:10.1111/j.1757-1707.2010.01088.x]

Lotze-Campen, H., Popp, A., Beringer, T., Müller, C., Bondeau, A., Rost, S., Lucht, W. (2010): Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling 221: 2188-2196 [doi:10.1016/j.ecolmodel.2009.10.002]

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de
http://iopscience.iop.org/1748-9326/6/3/034017/fulltext

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>