Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric Drive Vehicles Have Little Impact on U.S. Pollutant Emissions

22.01.2014
A new study from North Carolina State University indicates that even a sharp increase in the use of electric drive passenger vehicles (EDVs) by 2050 would not significantly reduce emissions of high-profile air pollutants carbon dioxide, sulfur dioxide or nitrogen oxides.

“EDVs” is a catch-all term that includes hybrid, plug-in hybrid and battery electric vehicles.

“We wanted to see how important EDVs may be over the next 40 years in terms of their ability to reduce emissions,” says Dr. Joseph DeCarolis, an assistant professor of civil, construction and environmental engineering at NC State and senior author of a paper on the new model. “We found that increasing the use of EDVs is not an effective way to produce large emissions reductions.”

The researchers ran 108 different scenarios in a powerful energy systems model to determine the impact of EDV use on emissions between now and 2050. They found that, even if EDVs made up 42 percent of passenger vehicles in the U.S., there would be little or no reduction in the emission of key air pollutants.

“There are a number of reasons for this,” DeCarolis says. “In part, it’s because some of the benefits of EDVs are wiped out by higher emissions from power plants. Another factor is that passenger vehicles make up a relatively small share of total emissions, limiting the potential impact of EDVs in the first place. For example, passenger vehicles make up only 20 percent of carbon dioxide emissions.

“From a policy standpoint, this study tells us that it makes more sense to set emissions reductions goals, rather than promoting specific vehicle technologies with the idea that they’ll solve the problem on their own.”

The energy systems model also showed that key factors in encouraging use of EDVs are oil price and battery cost. If batteries are cheap and oil is expensive, EDVs become more attractive to consumers. “That’s consistent with results from other studies,” DeCarolis says.

The paper, “How Much Do Electric Drive Vehicles Matter to Future U.S. Emissions?,” is published online in Environmental Science & Technology. Lead author of the paper is Samaneh Babaee, a Ph.D. student at NC State. The paper was co-authored by Dr. Ajay Nagpure, a former postdoctoral researcher at NC State who is now at the University of Minnesota. The research was supported by National Science Foundation grant CBET-0853766.

-shipman-

Note to Editors: The study abstract follows.

“How Much Do Electric Drive Vehicles Matter to Future U.S. Emissions?”

Authors: Samaneh Babaee and Joseph F. DeCarolis, North Carolina State University; Ajay S. Nagpure, University of Minnesota

Published: online January 2014 in Environmental Science & Technology

DOI: 10.1021/es4045677

Abstract: Hybrid, plug-in hybrid, and battery electric vehicles—known collectively as electric drive vehicles (EDVs)—may represent a clean and affordable option to meet growing U.S. light duty vehicle (LDV) demand. The goal of this study is twofold: identify the conditions under which EDVs achieve high LDV market penetration in the U.S. and quantify the associated change in CO2, SO2, and NOX emissions through mid-century. We employ the Integrated MARKAL-EFOM System (TIMES), a bottom-up energy system model, along with a U.S. dataset developed for this analysis. To characterize EDV deployment through 2050, varying assumptions related to crude oil and natural gas prices, a CO2 policy, a federal renewable portfolio standard, and vehicle battery cost were combined to form 108 different scenarios. Across these scenarios, oil prices and battery cost have the biggest effect on EDV deployment. The model results do not demonstrate a clear and consistent trend towards lower system-wide emissions as EDV deployment increases. In addition to the tradeoff between lower tailpipe and higher electric sector emissions associated with plug-in vehicles, the scenarios produce system-wide emissions effects that often mask the effect of EDV deployment.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu
http://news.ncsu.edu/releases/wms-decarolis-edv2014/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>