Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

El Niño Warming Causes Significant Coral Damage in Central Pacific

01.12.2015

Current El Niño conditions in the Pacific Ocean have created high water temperatures that are seriously damaging coral reefs, including those on Christmas Island, which may be the epicenter for what could become a global coral bleaching event.

Researchers from the Georgia Institute of Technology recently returned from the Island and are reporting that 50 to 90 percent of corals they saw were bleached and as many as 30 percent were already dead at some sites. The situation could worsen as water temperatures remain well above normal into the early months of 2016.


Credit: Pamela Grothe, Georgia Tech

Pocillopora coral colony is shown in the process of bleaching on a Christmas Island reef in early November.

“This El Niño event is driving one of the three largest global scale bleaching events on record,” said Kim Cobb, a professor in Georgia Tech’s School of Earth and Atmospheric Sciences who has studied long-term El Niño conditions.

“Ocean temperatures exceeded the threshold for healthy corals back in the summer, and are continuing to warm. Bleaching occurs when temperatures exceed a threshold that is function of the amount of warming, as well as the length of time at that temperature.”

Bleaching is an outward sign of stress on the corals, which release the symbiotic algae that normally help provide them with energy to sustain their metabolism during prolonged episodes of warm ocean temperatures.

The loss of these alga turns the coral colonies white, and opens them to disease and death. Bleached corals can recover if water temperatures return to normal, but continued stress could lead to widespread coral death, Cobb said.

Cobb has studied reef systems on Christmas Island for 18 years, and recently returned from a two-week visit to the area. She and other researchers measured water temperatures of 31 degrees Celsius, (88 degrees Fahrenheit), well above normal water temperatures of 27 degrees Celsius (81 degrees Fahrenheit).

“There’s an astounding amount of warming at this particular site,” said Cobb. “These reefs are under dramatic stress which is leading to severe coral loss. It will take years for these reefs to recover.”

Some coral species are more sensitive to thermal stress than others, and the researchers saw responses that varied from mild bleaching in some species to coral death in others. If the high temperatures continue as projected, species that have been only mildly affected so far may be pushed toward 100 percent bleaching, while species already bleached may be killed.

The last time water temperatures reached such levels was during the 1997-98 El Niño event, which was the largest ever recorded – until now. Until the current record-breaking El Niño event, the Christmas Island reefs had been thriving and healthy.

Georgia Tech researchers are planning to return to Christmas Island in March to assess the full impact of the damage. Cobb says the disaster will provide a unique opportunity to study the long-term ecological impacts of major bleaching events, which could become more frequent as the Earth warms.

“We are determined to turn this environmental catastrophe into a scientific gold mine by being out there before, during, and after this event to document what is going on at this reef,” she explained. “There is incredible interest in understanding how reefs recover from an event of this scale. If you fast-forward 50 years, this may be what a majority of the coral reefs around the world will be experiencing.”

Information gathered may help project how reefs will stand up to rising sea temperatures and increasing acidification, both caused by rising levels of atmospheric carbon dioxide. In the March trip, Cobb’s group plans to work with a research team led by marine ecologist Julia Baum from the University of Victoria.

The El Niño Southern Oscillation (ENSO) is a cycle of warm and cold temperatures that occurs naturally in the central Pacific approximately two to seven years. By studying fossil coral records from Christmas Island, Cobb and her research team have seen evidence of these cycles back at least 7,000 years. However, there is increasing evidence that El Niño events have changed in the past few decades.

“It’s clear from the data that El Niños have been strengthening in the recent past,” said Cobb. “Even without considering the current event, we have already documented that the recent spate of large El Niño events in the late 20th century stands out against a background of natural oscillations embedded in the coral records.”

While her work alone cannot demonstrate a cause-and-effect relationship between strengthening El Niño events and global warming, Cobb says that the combination of many different studies suggests that the rise in carbon dioxide levels is a major factor.

Though associated with the Pacific, El Niño events have worldwide impacts. In the United States, for instance, the strong El Niño is expected to help make this winter’s weather cooler and wetter than normal in the South, and warmer than normal in the North.

Coral reefs are important to the people who live in the Pacific area because they provide a nursery for fish and other aquatic life that provide a food source. The reefs also protect low-lying islands from storms and high waves. But their impact is global.

“From an ecological perspective, they are the nurseries of the global oceans,” Cobb said. “The loss of this habitat will have vast implications for ocean ecosystems and ocean services that we depend on, not just for the Christmas Island area, but on a global scale.”

Contact Information
John Toon
Director, Research News
Georgia Institute of Technology
jtoon@gatech.edu
Phone: 404-894-6986

www.gatech.edu

John Toon | newswise

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>