Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effectiveness of wastewater treatment may be damaged during a severe flu pandemic

02.03.2011
Existing plans for antiviral and antibiotic use during a severe influenza pandemic could reduce wastewater treatment efficiency prior to discharge into receiving rivers, resulting in water quality deterioration at drinking water abstraction points.

These conclusions are published this week (2 March 2011) in a new paper in the journal Environmental Health Perspectives, which reports on a study designed to assess the ecotoxicologic risks of a pandemic influenza medical response.

The research was carried out by a team from the Centre for Ecology & Hydrology (UK), the Institute for Scientific Interchange (Italy), Utrecht University (Netherlands), the University of Sheffield (UK), and Indiana University (USA).

The global public health community closely monitored the unfolding of the 2009 H1N1 influenza pandemic to best mitigate its impact on society. However, little attention was given to the impact that the medical response might have on the environment.

In order to evaluate this risk, the research team coupled a global spatially-structured epidemic model that simulates the quantities of antiviral and antibiotics used during an influenza pandemic of varying severity, with a water quality model applied to the Thames catchment in southern England to predict their environmental concentrations. An additional model was then used to assess ecotoxicologic effects of antibiotics and antiviral in wastewater treatment plants (WWTP) and rivers.

The research team concluded that, consistent with expectations, a mild pandemic (as in 2009) was projected to exhibit a negligible ecotoxicologic hazard. However in a moderate and severe pandemic nearly all WWTPs (80-100%) were projected to exceed the threshold for microbial growth inhibition, potentially reducing the capacity of the plant to treat wastewater. In addition, a proportion (5-40%) of the River Thames was similarly projected to exceed key thresholds for environmental toxicity, resulting in potential contamination and eutrophication at drinking water abstraction points.

Lead author Dr Andrew Singer, from the Centre for Ecology & Hydrology, said, "Our results suggest that existing plans for drug use during an influenza pandemic could result in discharge of inefficiently treated wastewater into the UK's rivers. The potential widespread release of antivirals and antibiotics into the environment may hasten the development of resistant pathogens with implications for human health during and potentially well after the formal end of the pandemic."

Dr Singer added, "We must develop a better understanding of wastewater treatment plants ecotoxicity before the hazards posed by a pandemic influenza medical response can be reliably assessed. However, the production and successful distribution of pre-pandemic and pandemic influenza vaccines could go a long way towards alleviating all of the identified environmental and human health problems highlighted in our paper, with the significant added benefit of reducing morbidity and mortality of the UK population. This latter challenge of vaccination is probably society's greatest challenge, but also where the greatest gains can be made."

Barnaby Smith | EurekAlert!
Further information:
http://www.ceh.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>