Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effect of important air pollutants may be absent from key precipitation observations

31.03.2014

Pioneering new research from the University of Exeter could have a major impact on climate and environmental science by drastically transforming the perceived reliability of key observations of precipitation, which includes rain, sleet and snow.

The ground breaking study examines the effect that increased aerosol concentrations in the atmosphere, emitted as a result of burning fossil fuels, had on regional temperature and precipitation levels.

Scientists from Exeter's Mathematics department compared observed regional temperature and precipitation changes throughout the 20th century with results produced by the latest complex climate models over the same period.

The study showed that the observed regional temperature changes, as well as observed precipitation levels in the tropics, were in agreement with the range of the modelled responses given current best estimates of the influence of aerosols on the Earth's energy budget.

However, when looking at geographical areas within the Northern Hemisphere mid-latitudes – which includes Europe, much of North Asia and North America – the study showed a significant discrepancy between observed precipitation levels and those predicted from the models.

This new analysis could transform our understanding of observed changes in the local hydrological cycle and offer a unique opportunity to correct for potential biases in measurements.

The new study, published in leading scientific journal Nature Climate Change, was produced by Joe Osborne and Dr Hugo Lambert, from Exeter's College of Engineering, Mathematics and Physical Sciences.

Dr Lambert explained: "Scientists have known that observed mid-latitude precipitation trends may be in error for many years. Our new physical framework fits together temperature changes, aerosol changes and other precipitation changes to show by how much. We now have the opportunity to correct 20th century precipitation trends."

The concentration of human-made aerosols in the atmosphere increased rapidly in the decades following the Second World War. Although aerosols interact with clouds and precipitation in complex ways, the primary effect is to reflect sunlight and cool the planet's surface. Hence, physical theory and modelling suggest there are robust expectations for regional temperature and precipitation change.

The study showed that climate models replicate the mid-twentieth-century fall in temperature linked to increased aerosol concentrations that is seen in observations.

It also showed that models and observations were in agreement over a reduction in rainfall in the Northern Hemisphere tropics around the same time, which is associated with the severe Sahel drought of the 1970s.

However, there was a dramatic discrepancy between the expected change in precipitation across the Northern Hemisphere mid-latitudes – where industrialisation occurred most heavily in the 20th century – and observations. While the modelling and physical theory suggested precipitation should fall, observations suggest that it increased.

Joe, a PhD student and lead author, explained the significance of the study. He said: "The study shows that precipitation in two key regions alters in line with mid-20th Century changes in aerosol across a number of the latest climate models. This can be understood in terms of the aerosol influence on the amount of energy received at the Earth's surface and consequent changes in atmospheric circulation.

"However, we also show that the response of precipitation observations in the mid-latitudes is not as we might have expected, given the models and our understanding."

###

The missing aerosol response in twentieth-century mid-latitude precipitation observations by Joe Osborne and Dr Hugo Lambert is published in Nature Climate Change.

Please not the strict embargo in place - 18.00 (GMT) on Sunday 30 March 2014

For further information please contact:

Duncan Sandes
Press Officer
+44 (0) 1392 722391/ 722062
d.sandes@exeter.ac.uk

About the University of Exeter

The University of Exeter is a Russell Group university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter has over 18,000 students and is ranked 8th in The Times and The Sunday Times Good University Guide league table, 10th in The Complete University Guide and 12th in the Guardian University Guide 2014. In the 2008 Research Assessment Exercise (RAE) 90% of the University's research was rated as being at internationally recognised levels and 16 of its 31 subjects are ranked in the top 10, with 27 subjects ranked in the top 20. Exeter was The Sunday Times University of the Year 2012-13.

The University has invested strategically to deliver more than £350 million worth of new facilities across its campuses in the last few years; including landmark new student services centres - the Forum in Exeter and The Exchange on the Penryn Campus in Cornwall, together with world-class new facilities for Biosciences, the Business School and the Environment and Sustainability Institute. There are plans for another £330 million of investment between now and 2016.

http://www.exeter.ac.uk

Duncan Sandes | EurekAlert!

Further reports about: Climate Exeter Hemisphere concentrations observations pollutants precipitation temperature

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>